FOCK REPRESENTATIONS

RYAN GRADY

In this note we use Clifford algebras and their Fock representations to build representations of $L U(N)$ and $L S U(N)$. Let H be the Hilbert space of square-integrable sections of the trivial rank N complex vector bundle over S^{1} and $P: H \rightarrow H$ the projection onto the space spanned by non-negative Fourier modes. To this data we can associate the Fermionic Fock space $\mathfrak{F}_{P} . \mathfrak{F}_{P}$ is a representation of level 1 of $L U(N)$. It turns out that all positive energy representations $L S U(N)$ at level l are contained in the Fermionic representation $\mathfrak{F}_{P}^{\otimes l}$.

1. Clifford Algebras and Fock Representations

1.1. The Clifford Algebra. Let $(H,\langle\rangle$,$) be a complex Hilbert space, the complex Clifford$ algebra $C(H)$ is the unital $*$-algebra generated by a complex linear map $f \mapsto c(f)$ for $f \in H$ satisfying the anticommutation relations

$$
c(f) c(g)+c(g) c(f)=0
$$

and

$$
c(f) c(g)^{*}+c(g)^{*} c(f)=\langle f, g\rangle
$$

Note that we can realize $C(H)$ explicitly by

$$
C(H)=T(H) /(f \otimes f-\langle f, f\rangle)
$$

The Clifford algebra has a natural action on ΛH given by $\pi(c(f)) \omega=f \wedge \omega$, the complex wave representation. Let $\Omega=1 \in \Lambda^{0} H$ be the vacuum vector, which is cyclic. The annhilation action $a(f)=c(f)^{*}$ is given by annhilating Ω and on decomposables by

$$
a(f)\left(\omega_{0} \wedge \cdots \wedge \omega_{n}\right)=\sum_{j=0}^{n}(-1)^{j}\left\langle\omega_{j}, f\right\rangle \omega_{0} \wedge \cdots \wedge \widehat{\omega_{j}} \wedge \cdots \wedge \omega_{n}
$$

Annhilation and creation really are adjoint with respect to the the inner product

$$
\left\langle\omega_{0} \wedge \cdots \wedge \omega_{n}, \eta_{0} \wedge \cdots \wedge \eta_{n}\right\rangle=\operatorname{Det}\left[\left\langle\omega_{i}, \eta_{j}\right\rangle\right] .
$$

Proposition 1.1. The wave representation is irreducible.
Proof. Let $T \in \operatorname{End}(\Lambda H)$ commuting with all $a(f)$'s, so for each $f \in H$

$$
a(f) T \Omega=T a(f) \Omega=0
$$

hence $T \Omega=\lambda \Omega$ for some $\lambda \in \mathbb{C}$ as

$$
\cap_{f \in H} \operatorname{ker} a(f)=\Omega \mathbb{C}
$$

Indeed if $\zeta \in \cap \operatorname{ker} a(f)$ then

$$
\left\langle\zeta, f_{0} \wedge \cdots \wedge f_{m}\right\rangle=\left\langle a\left(f_{0}\right) \zeta, f_{1} \wedge \cdots \wedge f_{m}\right\rangle=0
$$

and by linearity ζ is orthogonal to all elements $\bigoplus_{n>0} \Lambda^{n}(H)$ and hence lies in $\Lambda^{0}(H)=\Omega \mathbb{C}$. Now if T also commutes with all $c(f)$'s, then $T=\lambda I$ as Ω is cyclic for the $c(f)^{\prime}$'s.
1.2. Unitary Structures. Now, let $(V,()$,$) be a real Hilbert space of dimension other than$ odd (i.e. even or infinite). A unitary structure on V is $J \in O(V)$ such that $J^{2}=-I$. We use J to make V into a complex vector space $(i v=J(v))$ equipped with a Hermitian inner product which we will denote by $\left(V_{J},\langle\rangle,\right)$ where

$$
\langle v, w\rangle=(v, w)+i(v, J(w)) .
$$

We can use unitary structures to get more irreducible representations of Clifford algebras. Given a unitary structure J, define

$$
P_{J}=\frac{1}{2}(I-i J) \in \operatorname{End}\left(V \otimes_{\mathbb{R}} \mathbb{C}\right)
$$

Let H be the Hilbert space $V \otimes_{\mathbb{R}} \mathbb{C}$ with inner product

$$
\langle x \otimes \mu, y \otimes \nu\rangle=(x, y) \mu \bar{\nu} .
$$

As $J^{2}=-I$, we deduce that P_{J} is a projection operator. Denote by $F_{J}=P_{J} H$, which is also the $+i$ eigenspace of J.

The above discussion is symmetric in the sense that if P is a projection on a \mathbb{C}-vector space such that $P+\Sigma P \Sigma=I$, where Σ denotes complex conjugation, then

$$
J=i(2 P-I)
$$

defines a unitary structure on V.
Given a P_{J} as above define the fermionic Fock space $\mathfrak{F}_{P}=\Lambda P_{J} H \widehat{\otimes} \Lambda\left(P_{J}^{\perp} H\right)^{*} . C\left(V_{J}\right)$ acts irreducibly by $\pi_{J}(c(f))=c(P f)+c\left(\left(P^{\perp} f\right)^{*}\right)^{*}$. In terms of F_{J} we define $\mathfrak{F}\left(F_{J}\right)=\Lambda\left(\bar{F}_{J}\right)$ and complete with respect to the induced inner product $\bar{F}_{J} \subset V . \bar{v} \in \bar{L}$ acts via creation and $v \in L$ acts via annhilation. These two notions agree, despite our insistence on different notation.
I. Segal-Shale Equivalence Criterion. If J and K are unitary structures on V, then the following are equivalent:
(1) the Fock representations π_{J} and π_{K} are unitarily equivalent;
(2) the difference $P_{K}-P_{J}$ is a Hilbert-Schmidt operator;
(3) the composite linear operator

$$
F_{K} \subset V \rightarrow \bar{F}_{J}
$$

is Hilbert-Schmidt.
Proof.
$(2) \Rightarrow(3)$: this is immediate as the operator can be identified with $\left.\left(P_{K}-P_{J}\right)\right|_{F_{K}}$.
$(3) \Rightarrow(2)$: the claim follows as

$$
\begin{aligned}
P_{K}-P_{J} & =\left(I-P_{J}\right) P_{K}-P_{J}\left(I-P_{K}\right) \\
& =\left(I-P_{J}\right) P_{K}-\Sigma\left(I-P_{J}\right) P_{K} \Sigma
\end{aligned}
$$

and $\left(I-P_{J}\right) P_{K}$ is zero on $\bar{F}_{K} \stackrel{\text { def }}{=} \Sigma F_{K}$ and restricts to F_{K} as the operator $F_{K} \rightarrow \bar{F}_{J}$ as in (3).
$(2) \Rightarrow(1)$ (the converse is also true, but we don't give the proof):

- If the representations are finite then they are equivalent to ΛH, so we may assume that they are infinite dimensional.
- $T \stackrel{\text { def }}{=}\left(P_{K}-P_{J}\right)^{2}$ is compact, so by the spectral theorem

$$
H=\bigoplus_{\lambda \geq 0} H_{\lambda}
$$

and $P_{K}=P_{J}$ on H_{0}.

- T commutes with both P_{K} and P_{J}, so the H_{λ} are invariant under P_{K} and P_{J}. We can therefore further decompose H into

$$
H=\bigoplus_{j} V_{j}
$$

where V_{j} are finite dimensional irreducible submodules for P_{K} and P_{J} which are also eigenspaces for T.

- For any j, P_{K} and P_{J} (and I) generate $\operatorname{End}\left(V_{j}\right)$, so $\operatorname{dim} \operatorname{End}\left(V_{j}\right) \leq 4$ and therefore $\operatorname{dim} V_{j}=1$ or 2 .
- We can choose an orthonormal basis $\left(e_{i}\right)_{i \geq-a}$ for $P_{K}^{\perp} H$ with each e_{i} in some V_{j} and

$$
P_{J}^{\perp} e_{-1}=\cdots=P_{J}^{\perp} e_{-a}=0 \text { and } P_{J}^{\perp} e_{i} \neq 0
$$

for $i \geq 0$. We complete to an orthonormal basis of H by adding vectors from the V_{j} 's.

- Let $\left(f_{l}\right)_{k \geq-b}$ be an orthonormal basis for $P_{J}^{\perp} H$ such that $f_{l} \in V_{j} \ni e_{l}$ if $l \geq 0$ and $\left\langle e_{l}, f_{l}\right\rangle>0$.
- If V_{j} is a λ_{i}-eigenspace for T and e_{l} and $f_{l} \in V_{j}$, then $\left\langle e_{l}, f_{l}\right\rangle=\sqrt{1-\lambda_{i}}$.
- $\left\|P_{K}-P_{J}\right\|_{2}^{2}=\operatorname{Tr} T=a+b+2 \sum \lambda_{i}$, so in particular $\sum \lambda_{i}<\infty$.
- We now build a representation of $C(V)$ that intertwines the representations π_{K} and π_{J}. Let \mathcal{H} be the Hilbert space with orthonormal basis given by symbols $e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots$ where $i_{1}<i_{2}<\cdots$ and $i_{k+1}=i_{k}+1$ for k large. Then $\pi(c(f))=f \wedge$ yields a representation of $C(V)$.
- Define the cyclic vector $\xi \in \mathcal{H}$ by

$$
\xi=e_{-a} \wedge e_{-a+1} \wedge \cdots
$$

- $\langle\pi(a) \xi, \xi\rangle=\left\langle\pi_{K}(a) \Omega_{K}, \Omega_{K}\right)$ and $U\left(\pi_{K}(a) \Omega_{K}\right) \stackrel{\text { def }}{=} \pi(a) \xi$ defines a unitary from $\mathfrak{F}_{P_{K}}$ onto \mathcal{H} such that $\pi(a)=U \pi_{K}(a) U^{*}$ for some unitary $U \in U\left(\mathfrak{F}_{P_{K}}\right)$.
- To complete the proof it is enough to find $\eta \in \mathcal{H}$ such that

$$
\langle\pi(a) \eta, \eta\rangle=\left\langle\pi_{J}(a) \Omega_{J}, \Omega_{J}\right\rangle .
$$

- Define

$$
\eta_{N}=f_{-b} \wedge \cdots \wedge f_{-1} \wedge f_{0} \wedge \cdots f_{N} \wedge e_{N+1} \wedge e_{N+2} \wedge \cdots
$$

It is clear that for $a \in C(V)$ there exists an N large enough (depending on a) such that

$$
\left\langle\pi(a) \eta_{N}, \eta_{N}\right\rangle=\left\langle\pi_{J}(a) \Omega_{J}, \Omega_{J}\right\rangle
$$

Hence we need to show that the sequence $\left\{\eta_{N}\right\}$ has a limit.

- $\left\{\eta_{N}\right\}$ is a Cauchy sequence. Indeed,

$$
\left\langle\eta_{N}, \eta_{M}\right\rangle=\prod_{i=M+1}^{N}\left(e_{i}, f_{i}\right)=\prod_{i=M+1}^{N} \sqrt{1-\lambda_{i}}
$$

and as $\sum \lambda_{i}<\infty, \operatorname{Re}\left\langle\eta_{N}, \eta_{M}\right\rangle \rightarrow 1$ as $M \leq N \rightarrow \infty$.

2. Implementation and the Basic Representation

Let $u \in U\left(V_{J}\right)$, then u yields an automorphism of $C(V)$ via $c(f) \mapsto c(u f)$. An automorphism is said to be implemented in π_{J} (or \mathfrak{F}_{P}) if $\pi_{J}(c(u f))=U \pi_{J}(c(f)) U^{*}$ for some unitary $U \in U\left(\mathfrak{F}_{P}\right)$ unique up to a phase (i.e. $\phi \in \mathbb{C}$).

Proposition 2.1. u is implemented in \mathfrak{F}_{P} if $[u, P]$ is Hilbert-Schmidt.
Proof. Let $Q=u^{*} P_{J} u$, for J a unitary structure and let K be the unitary structure corresponding to Q. Then $\pi_{J}(c(u f))=\pi_{K}(c(f))=U \pi_{J}(c(f)) U^{*}$, where the last equality follows from the equivalence criterion.

Define the restricted unitary group $U_{P}\left(V_{J}\right)=\left\{u \in U\left(V_{J}\right):[u, P]\right.$ Hilbert-Schmidt $\}$, it is a topological group under the strong operator topology and the Hilbert-Schmidt norm. By the above corollary, there is a homomorphism $\pi: U_{P}\left(V_{J}\right) \rightarrow P U\left(\mathfrak{F}_{P}\right)$, called the basic projective representation.

Lemma 2.2. The basic representation is continuous.
Recall that it is enough to verify the above lemma at the identity, i.e. if $u_{n} \xrightarrow{s} I$ and $\left\|\left[u_{n}, P\right]\right\|_{2} \rightarrow 0$, then there exists lifts $U_{n} \in U\left(\mathfrak{F}_{P}\right)$ of $\pi\left(u_{n}\right)$ such that $U_{n} \xrightarrow{s} I$.

Note that if $[u, P]=0$, then u is canonically implemented in \mathfrak{F}_{P} (i.e. we actually have a unitary action) and we refer to this as canonical quantization. Similarly if $u P u^{*}=I-P$ then u is canonically implemented by a conjugate-linear isometry in \mathfrak{F}_{P} again called canonical quantization.

3. Relation to CFT

In [2], Segal associates to a Lie group G and level $\ell \in H^{4}(B G ; \mathbb{Z})$ a weakly conformal field theory. We now describe this construction.

We need to associate to each closed one manifold equipped with a label a vector space and to each surface with boundary a finite dimensional vector space built from the boundary vector spaces. Labels in this context correspond to positive energy representations of $L G$ at level ℓ. Let E denote the field theory, then $E\left(S^{1}, \rho\right)=V_{\rho}$.

Let $Y_{0} \xrightarrow{\Sigma} Y_{1}$ be a bordism with boundary components equipped with labels. Let $N\left(Y_{i}\right)$ be a tubular neighborhood in Σ, then we have a restriction map

$$
\operatorname{Hol}\left(\Sigma, G_{\mathbb{C}}\right) \rightarrow \operatorname{Hol}\left(N\left(Y_{0}\right), G_{\mathbb{C}}\right) \times \operatorname{Hol}\left(N\left(Y_{1}\right), G_{\mathbb{C}}\right)
$$

We have a natural (projective) action of $\operatorname{Map}\left(Y_{0}, G\right) \times \operatorname{Map}\left(Y_{1}, G\right)$ on the vector space V_{Σ}, where

$$
V_{\Sigma}=\bigotimes_{\rho \in \operatorname{Labels}\left(Y_{0}\right)} V_{\rho}^{\vee} \otimes \bigotimes_{\eta \in \operatorname{Labels}\left(Y_{1}\right)} V_{\eta} .
$$

Via the two maps $\operatorname{Hol}\left(N\left(Y_{i}\right), G_{\mathbb{C}}\right) \rightarrow \operatorname{Map}\left(Y_{i}, G\right)$, we get an action of $\operatorname{Hol}\left(\Sigma, G_{\mathbb{C}}\right)$ on V_{Σ}, then define

$$
E(\Sigma)=V(\Sigma)^{\mathrm{Hol}\left(\Sigma, G_{\mathrm{C}}\right)}
$$

It turns out that this fixed subspace is finite dimensional and further there is an $n \in \mathbb{Z}$, such that

$$
E(\Sigma)=E^{\prime}(\Sigma) \otimes \operatorname{Det}^{\otimes n}(\Sigma)
$$

The $E^{\prime}(\Sigma)$ corresponds to a three dimensional TFT, namely Chern-Simons.
It is of note that in order to see the fusion of PERs on the CFT side, one must be able to extend Chern-Simons to points.
3.1. The Action of $L U(N)$. Define $H=L^{2}\left(S^{1}\right) \otimes \mathbb{C}^{N}$, and $P: H \rightarrow H_{\geq 0}$ the projection onto the Hardy space. For $f \in C^{\infty}\left(S^{1}, \operatorname{End}\left(\mathbb{C}^{N}\right)\right)$, let $m(f)$ denote the corresponding multiplication operator. One can check that

$$
\|[P, m(f)]\|_{2} \leq\left\|f^{\prime}\right\|_{2}
$$

So $L U(N)$ satisfies the quantization criterion and we get a projective representation of $L U(N)$ on \mathfrak{F}_{P} which is continuous for the subspace topology $L U(N) \subset C^{\infty}\left(S^{1}, \operatorname{End}(V)\right)$. Similarly, there is a continuous projective representation of $\operatorname{LSU}(N)$ on \mathfrak{F}_{P}.

Let $G=U(N)$ and $1=\ell \in H^{4}(B U(N), \mathbb{Z}) \cong \mathbb{Z}$. Let ρ be such that $E\left(S^{1}, \rho\right)=\mathfrak{F}_{P}$. Consider the disk Σ as a bordism from \emptyset to $\left(S^{1}, \rho\right)$, we then have

$$
V_{\rho}^{\mathrm{Hol}(\Sigma, G L(N))}=V_{\rho}^{H \geq 0}=\Omega \mathbb{C},
$$

where $\Omega=1 \in \Lambda^{0}(P H) \subset \mathfrak{F}_{P}$ is the vacuum vector.
3.2. The Rot S^{1} Action. The rotation group Rot S^{1} acts on $L U(N)$ (or any $L G$) by $\left(r_{\alpha} f\right)(\theta)=f(\theta+\alpha)$. Similarly, Rot S^{1} acts in a unitary fashion on $H=L^{2}\left(S^{1}\right) \otimes \mathbb{C}^{N}$ which leaves $H_{\geq 0}$ invariant, hence this action is canonically quantized. As a result we get a projective representation of $L U(N) \rtimes \operatorname{Rot} S^{1}$ on \mathfrak{F}_{P} which restricts to an honest representation on $\operatorname{Rot} S^{1}$. The spectral decomposition of this Rot S^{1} action gives the energy grading.
3.3. The $\operatorname{Diff}\left(S^{1}\right)$ Action. Consider the subgroup of $\operatorname{Diff}\left(S^{1}\right)$ which extend to the disk in a way that preserves the conformal structure. This group (or rather its double cover) is $S U_{ \pm}(1,1)$ which can be described explicitly by

$$
S U_{ \pm}(1,1)=\left\{\left(\begin{array}{cc}
\alpha & \beta \\
\bar{\beta} & \bar{\alpha}
\end{array}\right):|\alpha|^{2}-|\beta|^{2}= \pm 1\right\}
$$

Let $S U_{+}(1,1)$ denote the elements which preserve orientation i.e. have determinant 1 . Note that $S U_{-}(1,1)$ is a coset of $S U_{+}(1,1)$ with representative $F=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$. The action of $S U_{ \pm}(1,1)$ on S^{1} is given by

$$
g(z)=\frac{\alpha z+\beta}{\bar{\beta} z+\bar{\alpha}}
$$

which leads to a unitary action on H via

$$
\left(V_{g} \cdot f\right)(z)=\frac{f\left(g^{-1}(z)\right)}{(\alpha-\bar{\beta} z)}
$$

For $|z|<1$ and $|\alpha|>|\beta|(\alpha-\bar{\beta} z)^{-1}$ is holomorphic, so for each $g \in S U_{+}(1,1), V_{g}$ commutes with the projection P and hence the action is canonically quantized. Note that $\left(V_{F} \cdot f\right)(z)=$ $z^{-1} f\left(z^{-1}\right)$, so $F P F=I-P$ and hence F is canonically implemented in \mathfrak{F}_{P} by a conjugate linear isometry fixing the vacuum vector. We thus have an orthogonal representation of $S U_{ \pm}(1,1)$ for the underlying real inner product on \mathfrak{F}_{P}, with $S U_{+}(1,1)$ preserving the complex structure and $S U_{-}(1,1)$ reversing it. The same is true in $\mathfrak{F}_{P}^{\otimes \ell}$.
3.4. The Charge Grading. Consider the constant loops $U(1) \subset L U(1)$ sitting inside of $L U(N)$ via the diagonal embedding. This action is given by multiplication by z on H, the action is canonically quantized and we let U_{z} denote the operator on \mathfrak{F}_{p} corresponding to $z \in U(1)$. Note that this $U(1)$ action gives the usual grading of the (non-completed) exterior algebra $\Lambda P H$ and the inverted grading on $\Lambda\left(P^{\perp} H\right)^{*}$, the total grading on \mathfrak{F}_{P} is called the charge grading, i.e. $\omega \in \Lambda^{p} P H \otimes \Lambda^{q}\left(P^{\perp} H\right)^{*}$ has charge $p-q$. The $\mathbb{Z} / 2$-grading on \mathfrak{F}_{p} is given by U_{-1} eigenspaces.

Lemma 3.1. Let $z \in U(1)$, then for all $g \in \operatorname{LSU}(N), \pi(g) U_{z} \pi(g)^{*}=U_{z}$. That is, the $\operatorname{LSU}(N)$ action is compatible with the charge grading.

Corollary 3.2. The operator $\pi(g)$ is even (i.e. commutes with U_{-1}) for all $g \in \operatorname{LSU}(N)$.

4. Functoriality of the Fock Representation

Note the notation has changed, in what follows $F(L)$ represents \mathfrak{F}_{P}, where $L=P V$. The language of generalized lagrangians is more amenable to what follows and hence the change in notation.

Symplectic reduction is a quotient construction for symplectic vector spaces. Let (V, ω) be a symplectic vector space, i.e. ω is a non-degenerate, skew-symmetric, bilinear form. For a subspace $U \subset V$, the annhilator U^{\perp} is defined by

$$
U^{\perp}:=\{v \in V: \omega(v, u)=0 \text { for all } u \in U\} .
$$

A subspace $U \subset V$ is isotropic if $U \subseteq U^{\perp}$. Given an isotropic subspace $U \subset V$ we produce a new symplectic vector space (W, η) called the symplectic reduction of $(V, \omega) .(W, \eta)$ is defined as

$$
W:=U^{\perp} / U \text { with symplectic form } \eta\left(\left[u_{1}\right],\left[u_{2}\right]\right):=\omega\left(u_{1}, u_{2}\right) .
$$

It is easy to see that $\operatorname{dim} W=\operatorname{dim} V-2 \operatorname{dim} U$. Further, if $L \subset V$ is a Lagrangian, then we get a Lagrangian $L^{\text {red }}$, where

$$
L^{\mathrm{red}}:=\left(L \cap U^{\perp}\right) /(L \cap U) .
$$

We would like to view the assignments $V \mapsto C(V)$ and $L \mapsto F(L)$ as a functor. The objects of the domain category are complex Hilbert spaces with involutions and morphisms from V_{1} to V_{2} are Lagrangian subspaces of $V_{2} \oplus-V_{1}$. Given two morphisms L_{1} and L_{2} which we visualize as

$$
V_{1} \xrightarrow{L_{1}} V_{2} \xrightarrow{L_{2}} V_{3}
$$

we want to form their composition which is a Lagrangian of $V_{3} \oplus-V_{1}$. This is accomplished via symplectic reduction of the Lagrangian

$$
L=L_{2} \oplus L_{1} \subset V_{3} \oplus-V_{2} \oplus V_{2} \oplus-V_{1}
$$

with regards to the isotropic subspace

$$
U=\left\{\left(0, v_{2}, v_{2}, 0\right) \mid v_{2} \in V_{2}\right\} \subset V_{3} \oplus-V_{2} \oplus V_{2} \oplus-V_{1} .
$$

Indeed this yields the desired result as $U^{\perp} / U \cong V_{3} \oplus-V_{1}$.
The range category of our potential functor is that of $\mathbb{Z} / 2$-graded algebras. Explicitly, the objects of this category are $\mathbb{Z} / 2$-graded algebras and the morphisms are pointed, graded bimodules. The composition of a pointed B - A-bimodule $\left(M, m_{0}\right)$ and a pointed C - B-bimodule $\left(N, n_{0}\right)$ is the pointed C - A-bimodule $\left(N \otimes_{B} M, n_{0} \otimes m_{0}\right)$. If $C(V)$ generates a Type I von Neumann algebra in $B(F(L))$, then the Clifford algebra and Fock space construction is a lax functor (see [3]). In the case that $C(V)$ is not of Type I, we need to use Connes' Fusion.

References

[1] Plymen, R.J., \& Robinson, P.L., Spinors in Hilbert space, Cambridge Univ Press, 1994.
[2] Segal, G., Notes on conformal field theory, preprint.
[3] Stolz, S. \& Teichner, P., What is an elliptic object?, Topology, Geometry, and Quanutm Field Theory., LMSLNS 308, 2004.
[4] Wasserman, A., Operator algebras and conformal field theory III., Invent. math. 133, 467-538, 1998.

