FOCK REPRESENTATIONS

RYAN GRADY

In this note we use Clifford algebras and their Fock representations to build representations of LU(N) and LSU(N). Let H be the Hilbert space of square-integrable sections of the trivial rank N complex vector bundle over S^1 and $P: H \to H$ the projection onto the space spanned by non-negative Fourier modes. To this data we can associate the Fermionic Fock space \mathfrak{F}_P . \mathfrak{F}_P is a representation of level 1 of LU(N). It turns out that all positive energy representations LSU(N) at level l are contained in the Fermionic representation $\mathfrak{F}_P^{\otimes l}$.

1. CLIFFORD ALGEBRAS AND FOCK REPRESENTATIONS

1.1. The Clifford Algebra. Let (H, \langle , \rangle) be a complex Hilbert space, the complex Clifford algebra C(H) is the unital *-algebra generated by a complex linear map $f \mapsto c(f)$ for $f \in H$ satisfying the anticommutation relations

$$c(f)c(g) + c(g)c(f) = 0$$

and

$$c(f)c(g)^* + c(g)^*c(f) = \langle f, g \rangle$$

Note that we can realize C(H) explicitly by

$$C(H) = T(H)/(f \otimes f - \langle f, f \rangle).$$

The Clifford algebra has a natural action on ΛH given by $\pi(c(f))\omega = f \wedge \omega$, the complex wave representation. Let $\Omega = 1 \in \Lambda^0 H$ be the vacuum vector, which is cyclic. The annhibition action $a(f) = c(f)^*$ is given by annhibiting Ω and on decomposables by

$$a(f)(\omega_0 \wedge \dots \wedge \omega_n) = \sum_{j=0}^n (-1)^j \langle \omega_j, f \rangle \omega_0 \wedge \dots \wedge \widehat{\omega_j} \wedge \dots \wedge \omega_n.$$

Annhibition and creation really are adjoint with respect to the the inner product

$$\langle \omega_0 \wedge \cdots \wedge \omega_n, \eta_0 \wedge \cdots \wedge \eta_n \rangle = \operatorname{Det}[\langle \omega_i, \eta_j \rangle].$$

Proposition 1.1. The wave representation is irreducible.

Proof. Let $T \in \text{End}(\Lambda H)$ commuting with all a(f)'s, so for each $f \in H$

$$a(f)T\Omega = Ta(f)\Omega = 0,$$

Date: August 17, 2010.

hence $T\Omega = \lambda \Omega$ for some $\lambda \in \mathbb{C}$ as

$$\bigcap_{f\in H} \ker a(f) = \Omega \mathbb{C}.$$

Indeed if $\zeta \in \cap \ker a(f)$ then

$$\langle \zeta, f_0 \wedge \cdots \wedge f_m \rangle = \langle a(f_0)\zeta, f_1 \wedge \cdots \wedge f_m \rangle = 0,$$

and by linearity ζ is orthogonal to all elements $\bigoplus_{n>0} \Lambda^n(H)$ and hence lies in $\Lambda^0(H) = \Omega \mathbb{C}$. Now if T also commutes with all c(f)'s, then $T = \lambda I$ as Ω is cyclic for the c(f)'s. \Box

1.2. Unitary Structures. Now, let (V, (,)) be a real Hilbert space of dimension other than odd (i.e. even or infinite). A unitary structure on V is $J \in O(V)$ such that $J^2 = -I$. We use J to make V into a complex vector space (iv = J(v)) equipped with a Hermitian inner product which we will denote by (V_J, \langle , \rangle) where

$$\langle v, w \rangle = (v, w) + i(v, J(w)).$$

We can use unitary structures to get more irreducible representations of Clifford algebras. Given a unitary structure J, define

$$P_J = \frac{1}{2}(I - iJ) \in \operatorname{End}(V \otimes_{\mathbb{R}} \mathbb{C}).$$

Let H be the Hilbert space $V \otimes_{\mathbb{R}} \mathbb{C}$ with inner product

$$\langle x \otimes \mu, y \otimes \nu \rangle = (x, y) \mu \overline{\nu}$$

As $J^2 = -I$, we deduce that P_J is a projection operator. Denote by $F_J = P_J H$, which is also the +i eigenspace of J.

The above discussion is symmetric in the sense that if P is a projection on a \mathbb{C} -vector space such that $P + \Sigma P \Sigma = I$, where Σ denotes complex conjugation, then

$$J = i(2P - I)$$

defines a unitary structure on V.

Given a P_J as above define the fermionic Fock space $\mathfrak{F}_P = \Lambda P_J H \widehat{\otimes} \Lambda(P_J^{\perp} H)^*$. $C(V_J)$ acts irreducibly by $\pi_J(c(f)) = c(Pf) + c((P^{\perp}f)^*)^*$. In terms of F_J we define $\mathfrak{F}(F_J) = \Lambda(\overline{F}_J)$ and complete with respect to the induced inner product $\overline{F}_J \subset V$. $\overline{v} \in \overline{L}$ acts via creation and $v \in L$ acts via annhibition. These two notions agree, despite our insistence on different notation.

I. Segal-Shale Equivalence Criterion. If J and K are unitary structures on V, then the following are equivalent:

- (1) the Fock representations π_J and π_K are unitarily equivalent;
- (2) the difference $P_K P_J$ is a Hilbert-Schmidt operator;

(3) the composite linear operator

$$F_K \subset V \to \overline{F}_J$$

is Hilbert-Schmidt.

Proof.

 $(2) \Rightarrow (3)$: this is immediate as the operator can be identified with $(P_K - P_J)|_{F_K}$.

 $(3) \Rightarrow (2)$: the claim follows as

$$P_K - P_J = (I - P_J)P_K - P_J(I - P_K)$$

= $(I - P_J)P_K - \Sigma(I - P_J)P_K\Sigma$

and $(I - P_J)P_K$ is zero on $\overline{F}_K \stackrel{\text{def}}{=} \Sigma F_K$ and restricts to F_K as the operator $F_K \to \overline{F}_J$ as in (3).

 $(2) \Rightarrow (1)$ (the converse is also true, but we don't give the proof):

- If the representations are finite then they are equivalent to ΛH , so we may assume that they are infinite dimensional.
- $T \stackrel{def}{=} (P_K P_J)^2$ is compact, so by the spectral theorem

$$H = \bigoplus_{\lambda \ge 0} H_{\lambda}$$

and $P_K = P_J$ on H_0 .

• T commutes with both P_K and P_J , so the H_{λ} are invariant under P_K and P_J . We can therefore further decompose H into

$$H = \bigoplus_j V_j$$

where V_j are finite dimensional irreducible submodules for P_K and P_J which are also eigenspaces for T.

- For any j, P_K and P_J (and I) generate $\operatorname{End}(V_j)$, so dim $\operatorname{End}(V_j) \leq 4$ and therefore dim $V_j = 1$ or 2.
- We can choose an orthonormal basis $(e_i)_{i\geq -a}$ for $P_K^{\perp}H$ with each e_i in some V_j and

$$P_J^{\perp} e_{-1} = \dots = P_J^{\perp} e_{-a} = 0$$
 and $P_J^{\perp} e_i \neq 0$

for $i \ge 0$. We complete to an orthonormal basis of H by adding vectors from the V_i 's.

- Let $(f_l)_{k\geq -b}$ be an orthonormal basis for $P_J^{\perp}H$ such that $f_l \in V_j \ni e_l$ if $l \geq 0$ and $\langle e_l, f_l \rangle > 0$.
- If V_j is a λ_i -eigenspace for T and e_l and $f_l \in V_j$, then $\langle e_l, f_l \rangle = \sqrt{1 \lambda_i}$.
- $||P_K P_J||_2^2 = \text{Tr}T = a + b + 2\sum \lambda_i$, so in particular $\sum \lambda_i < \infty$.

- We now build a representation of C(V) that intertwines the representations π_K and π_J . Let \mathcal{H} be the Hilbert space with orthonormal basis given by symbols $e_{i_1} \wedge e_{i_2} \wedge \cdots$ where $i_1 < i_2 < \cdots$ and $i_{k+1} = i_k + 1$ for k large. Then $\pi(c(f)) = f \wedge$ yields a representation of C(V).
- Define the cyclic vector $\xi \in \mathcal{H}$ by

$$\xi = e_{-a} \wedge e_{-a+1} \wedge \cdots$$

- $\langle \pi(a)\xi,\xi\rangle = \langle \pi_K(a)\Omega_K,\Omega_K\rangle$ and $U(\pi_K(a)\Omega_K) \stackrel{def}{=} \pi(a)\xi$ defines a unitary from \mathfrak{F}_{P_K} onto \mathcal{H} such that $\pi(a) = U\pi_K(a)U^*$ for some unitary $U \in U(\mathfrak{F}_{P_K})$.
- To complete the proof it is enough to find $\eta \in \mathcal{H}$ such that

$$\langle \pi(a)\eta,\eta\rangle = \langle \pi_J(a)\Omega_J,\Omega_J\rangle.$$

• Define

$$\eta_N = f_{-b} \wedge \dots \wedge f_{-1} \wedge f_0 \wedge \dots f_N \wedge e_{N+1} \wedge e_{N+2} \wedge \dots$$

It is clear that for $a \in C(V)$ there exists an N large enough (depending on a) such that

$$\langle \pi(a)\eta_N,\eta_N\rangle = \langle \pi_J(a)\Omega_J,\Omega_J\rangle$$

Hence we need to show that the sequence $\{\eta_N\}$ has a limit.

• $\{\eta_N\}$ is a Cauchy sequence. Indeed,

$$\langle \eta_N, \eta_M \rangle = \prod_{i=M+1}^N (e_i, f_i) = \prod_{i=M+1}^N \sqrt{1 - \lambda_i}$$

and as $\sum \lambda_i < \infty$, $\operatorname{Re}\langle \eta_N, \eta_M \rangle \to 1$ as $M \leq N \to \infty$.

2. Implementation and the Basic Representation

Let $u \in U(V_J)$, then u yields an automorphism of C(V) via $c(f) \mapsto c(uf)$. An automorphism is said to be *implemented* in π_J (or \mathfrak{F}_P) if $\pi_J(c(uf)) = U\pi_J(c(f))U^*$ for some unitary $U \in U(\mathfrak{F}_P)$ unique up to a phase (i.e. $\phi \in \mathbb{C}$).

Proposition 2.1. *u* is implemented in \mathfrak{F}_P if [u, P] is Hilbert-Schmidt.

Proof. Let $Q = u^* P_J u$, for J a unitary structure and let K be the unitary structure corresponding to Q. Then $\pi_J(c(uf)) = \pi_K(c(f)) = U\pi_J(c(f))U^*$, where the last equality follows from the equivalence criterion.

Define the restricted unitary group $U_P(V_J) = \{u \in U(V_J) : [u, P] \text{ Hilbert-Schmidt}\}$, it is a topological group under the strong operator topology and the Hilbert-Schmidt norm. By the above corollary, there is a homomorphism $\pi : U_P(V_J) \to PU(\mathfrak{F}_P)$, called the *basic* projective representation.

Lemma 2.2. The basic representation is continuous.

Recall that it is enough to verify the above lemma at the identity, i.e. if $u_n \xrightarrow{s} I$ and $||[u_n, P]||_2 \to 0$, then there exists lifts $U_n \in U(\mathfrak{F}_P)$ of $\pi(u_n)$ such that $U_n \xrightarrow{s} I$.

Note that if [u, P] = 0, then u is canonically implemented in \mathfrak{F}_P (i.e. we actually have a unitary action) and we refer to this as *canonical quantization*. Similarly if $uPu^* = I - P$ then u is canonically implemented by a conjugate-linear isometry in \mathfrak{F}_P again called canonical quantization.

3. Relation to CFT

In [2], Segal associates to a Lie group G and level $\ell \in H^4(BG; \mathbb{Z})$ a weakly conformal field theory. We now describe this construction.

We need to associate to each closed one manifold equipped with a label a vector space and to each surface with boundary a finite dimensional vector space built from the boundary vector spaces. Labels in this context correspond to positive energy representations of LG at level ℓ . Let E denote the field theory, then $E(S^1, \rho) = V_{\rho}$.

Let $Y_0 \xrightarrow{\Sigma} Y_1$ be a bordism with boundary components equipped with labels. Let $N(Y_i)$ be a tubular neighborhood in Σ , then we have a restriction map

$$\operatorname{Hol}(\Sigma, G_{\mathbb{C}}) \to \operatorname{Hol}(N(Y_0), G_{\mathbb{C}}) \times \operatorname{Hol}(N(Y_1), G_{\mathbb{C}}).$$

We have a natural (projective) action of $\operatorname{Map}(Y_0, G) \times \operatorname{Map}(Y_1, G)$ on the vector space V_{Σ} , where

$$V_{\Sigma} = \bigotimes_{\rho \in \text{Labels}(Y_0)} V_{\rho}^{\vee} \otimes \bigotimes_{\eta \in \text{Labels}(Y_1)} V_{\eta}.$$

Via the two maps $\operatorname{Hol}(N(Y_i), G_{\mathbb{C}}) \to \operatorname{Map}(Y_i, G)$, we get an action of $\operatorname{Hol}(\Sigma, G_{\mathbb{C}})$ on V_{Σ} , then define

$$E(\Sigma) = V(\Sigma)^{\operatorname{Hol}(\Sigma, G_{\mathbb{C}})}.$$

It turns out that this fixed subspace is finite dimensional and further there is an $n \in \mathbb{Z}$, such that

$$E(\Sigma) = E'(\Sigma) \otimes \mathrm{Det}^{\otimes n}(\Sigma).$$

The $E'(\Sigma)$ corresponds to a three dimensional TFT, namely Chern-Simons.

It is of note that in order to see the fusion of PERs on the CFT side, one must be able to extend Chern-Simons to points.

3.1. The Action of LU(N). Define $H = L^2(S^1) \otimes \mathbb{C}^N$, and $P : H \to H_{\geq 0}$ the projection onto the Hardy space. For $f \in C^{\infty}(S^1, \operatorname{End}(\mathbb{C}^N))$, let m(f) denote the corresponding multiplication operator. One can check that

$$||[P, m(f)]||_2 \le ||f'||_2.$$

So LU(N) satisfies the quantization criterion and we get a projective representation of LU(N) on \mathfrak{F}_P which is continuous for the subspace topology $LU(N) \subset C^{\infty}(S^1, \operatorname{End}(V))$. Similarly, there is a continuous projective representation of LSU(N) on \mathfrak{F}_P .

Let G = U(N) and $1 = \ell \in H^4(BU(N), \mathbb{Z}) \cong \mathbb{Z}$. Let ρ be such that $E(S^1, \rho) = \mathfrak{F}_P$. Consider the disk Σ as a bordism from \emptyset to (S^1, ρ) , we then have

$$V_{\rho}^{\operatorname{Hol}(\Sigma,GL(N))} = V_{\rho}^{H_{\geq 0}} = \Omega \mathbb{C}_{P}$$

where $\Omega = 1 \in \Lambda^0(PH) \subset \mathfrak{F}_P$ is the vacuum vector.

3.2. The Rot S^1 Action. The rotation group Rot S^1 acts on LU(N) (or any LG) by $(r_{\alpha}f)(\theta) = f(\theta + \alpha)$. Similarly, Rot S^1 acts in a unitary fashion on $H = L^2(S^1) \otimes \mathbb{C}^N$ which leaves $H_{\geq 0}$ invariant, hence this action is canonically quantized. As a result we get a projective representation of $LU(N) \rtimes \text{Rot } S^1$ on \mathfrak{F}_P which restricts to an honest representation on Rot S^1 . The spectral decomposition of this Rot S^1 action gives the energy grading.

3.3. The Diff (S^1) Action. Consider the subgroup of Diff (S^1) which extend to the disk in a way that preserves the conformal structure. This group (or rather its double cover) is $SU_{\pm}(1,1)$ which can be described explicitly by

$$SU_{\pm}(1,1) = \left\{ \begin{pmatrix} \alpha & \beta \\ \overline{\beta} & \overline{\alpha} \end{pmatrix} : |\alpha|^2 - |\beta|^2 = \pm 1 \right\}.$$

Let $SU_{+}(1,1)$ denote the elements which preserve orientation i.e. have determinant 1. Note that $SU_{-}(1,1)$ is a coset of $SU_{+}(1,1)$ with representative $F = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$. The action of $SU_{\pm}(1,1)$ on S^{1} is given by

$$g(z) = \frac{\alpha z + \beta}{\overline{\beta} z + \overline{\alpha}},$$

which leads to a unitary action on H via

$$(V_g \cdot f)(z) = \frac{f(g^{-1}(z))}{(\alpha - \overline{\beta}z)}.$$

For |z| < 1 and $|\alpha| > |\beta| (\alpha - \overline{\beta}z)^{-1}$ is holomorphic, so for each $g \in SU_+(1,1)$, V_g commutes with the projection P and hence the action is canonically quantized. Note that $(V_F \cdot f)(z) = z^{-1}f(z^{-1})$, so FPF = I - P and hence F is canonically implemented in \mathfrak{F}_P by a conjugate linear isometry fixing the vacuum vector. We thus have an orthogonal representation of $SU_{\pm}(1,1)$ for the underlying real inner product on \mathfrak{F}_P , with $SU_+(1,1)$ preserving the complex structure and $SU_-(1,1)$ reversing it. The same is true in $\mathfrak{F}_P^{\otimes \ell}$. 3.4. The Charge Grading. Consider the constant loops $U(1) \subset LU(1)$ sitting inside of LU(N) via the diagonal embedding. This action is given by multiplication by z on H, the action is canonically quantized and we let U_z denote the operator on \mathfrak{F}_p corresponding to $z \in U(1)$. Note that this U(1) action gives the usual grading of the (non-completed) exterior algebra ΛPH and the inverted grading on $\Lambda(P^{\perp}H)^*$, the total grading on \mathfrak{F}_P is called the *charge* grading, i.e. $\omega \in \Lambda^p PH \otimes \Lambda^q (P^{\perp}H)^*$ has charge p - q. The $\mathbb{Z}/2$ -grading on \mathfrak{F}_p is given by U_{-1} eigenspaces.

Lemma 3.1. Let $z \in U(1)$, then for all $g \in LSU(N)$, $\pi(g)U_z\pi(g)^* = U_z$. That is, the LSU(N) action is compatible with the charge grading.

Corollary 3.2. The operator $\pi(g)$ is even (i.e. commutes with U_{-1}) for all $g \in LSU(N)$.

4. FUNCTORIALITY OF THE FOCK REPRESENTATION

Note the notation has changed, in what follows F(L) represents \mathfrak{F}_P , where L = PV. The language of generalized lagrangians is more amenable to what follows and hence the change in notation.

Symplectic reduction is a quotient construction for symplectic vector spaces. Let (V, ω) be a symplectic vector space, i.e. ω is a non-degenerate, skew-symmetric, bilinear form. For a subspace $U \subset V$, the annhibitor U^{\perp} is defined by

$$U^{\perp} := \{ v \in V : \omega(v, u) = 0 \text{ for all } u \in U \}.$$

A subspace $U \subset V$ is *isotropic* if $U \subseteq U^{\perp}$. Given an isotropic subspace $U \subset V$ we produce a new symplectic vector space (W, η) called the *symplectic reduction* of (V, ω) . (W, η) is defined as

$$W := U^{\perp}/U$$
 with symplectic form $\eta([u_1], [u_2]) := \omega(u_1, u_2).$

It is easy to see that dim $W = \dim V - 2 \dim U$. Further, if $L \subset V$ is a Lagrangian, then we get a Lagrangian L^{red} , where

$$L^{\mathrm{red}} := \left(L \cap U^{\perp}\right) / (L \cap U).$$

We would like to view the assignments $V \mapsto C(V)$ and $L \mapsto F(L)$ as a functor. The objects of the domain category are complex Hilbert spaces with involutions and morphisms from V_1 to V_2 are Lagrangian subspaces of $V_2 \oplus -V_1$. Given two morphisms L_1 and L_2 which we visualize as

$$V_1 \xrightarrow{L_1} V_2 \xrightarrow{L_2} V_3$$

we want to form their composition which is a Lagrangian of $V_3 \oplus -V_1$. This is accomplished via symplectic reduction of the Lagrangian

$$L = L_2 \oplus L_1 \subset V_3 \oplus -V_2 \oplus V_2 \oplus -V_1$$

with regards to the isotropic subspace

$$U = \{ (0, v_2, v_2, 0) | v_2 \in V_2 \} \subset V_3 \oplus -V_2 \oplus V_2 \oplus -V_1.$$

Indeed this yields the desired result as $U^{\perp}/U \cong V_3 \oplus -V_1$.

The range category of our potential functor is that of $\mathbb{Z}/2$ -graded algebras. Explicitly, the objects of this category are $\mathbb{Z}/2$ -graded algebras and the morphisms are pointed, graded bimodules. The composition of a pointed *B*-*A*-bimodule (M, m_0) and a pointed *C*-*B*-bimodule (N, n_0) is the pointed *C*-*A*-bimodule $(N \otimes_B M, n_0 \otimes m_0)$. If C(V) generates a Type I von Neumann algebra in B(F(L)), then the Clifford algebra and Fock space construction is a lax functor (see [3]). In the case that C(V) is not of Type I, we need to use Connes' Fusion.

References

- [1] Plymen, R.J., & Robinson, P.L., Spinors in Hilbert space, Cambridge Univ Press, 1994.
- [2] Segal, G., Notes on conformal field theory, preprint.
- [3] Stolz, S. & Teichner, P., What is an elliptic object?, Topology, Geometry, and Quanutm Field Theory., LMSLNS 308, 2004.
- [4] Wasserman, A., Operator algebras and conformal field theory III., Invent. math. 133, 467-538, 1998.