BOUNDARY CFTS AND THEIR CLASSIFICATION VIA FROBENIUS ALGEBRAS

SPEAKER: EMILY PETERS TYPIST: CORBETT REDDEN

ABSTRACT. Notes from the "Conformal Field Theory and Operator Algebras workshop," August 2010, Oregon.

Idea/Motivation: We're really doing this because we'd like to do all this in 4-dimensions, but its so intractable that we do it in 1 or 2 dimensions. Boundary CFTs are a nice intermediate point.

We always assume locality in 1-dimension: if $I \cap J = \emptyset$ then $[\mathcal{A}(I), \mathcal{A}(J)] = 0$ (they commute). In 2-dimensions, we want them to be in their causal complements.

Let $\mathcal{O}_1, \mathcal{O}_2 \in M^2$, \mathcal{O}_1 in the causal complement of \mathcal{O}_2 .

[[[Finish picture]]]

<==

Date: August 20, 2010.

Available online at http://math.mit.edu/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!

SPEAKER: EMILY PETERS TYPIST: CORBETT REDDEN

- (1) Split property: $I \cap J = \emptyset \Rightarrow \mathcal{A}(I) \lor \mathcal{A}(J) = \mathcal{A}(I) \otimes \mathcal{A}(J)$
- (2) Strong additivity: $\mathcal{A}((a,b)) \vee \mathcal{A}((b,c)) = \mathcal{A}((a,c))$
- (3) Finite index: $\mu_2 < \infty$

Let M_+ = positive Minkowski space = {(t, x) | x > 0}. Consider double cones \mathcal{O}

0.1. Boundary CFTs.

Definition. A boundary CFT over a given 1-d conformal net \mathcal{A} is an assignment $\mathcal{O} \mapsto \mathcal{B}_+(\mathcal{O}) \subset B(H)$ satisfying locality, isotony, equivariance with respect to an action of $PSL_2(\mathbb{R})$ on M_+ and H, and

- existence and uniqueness of a vacuum vector $\Omega \in B(H)$,
- covariance: $U(g)\mathcal{B}_+(\mathcal{O})U(g)^* = \mathcal{B}_+(g\mathcal{O})$ when $g\mathcal{O}$ is a double cone,
- an action π of the net \mathcal{A} on H, covariant under $PSL_2(\mathbb{R})$; i.e.

$$U(g)\pi(\mathcal{A}(I))U(g^*) = \mathcal{A}(gI),$$

• Joint irreduciblity: Where $\pi(\mathcal{A})'' =$ the vNA generated by all of $\pi(\mathcal{A}(I))$, then

$$\pi(\mathcal{A})'' \vee \mathcal{B}(\mathcal{O}) = B(H).$$

Example. Trivial BCFT over \mathcal{A} is

$$\mathcal{O} \mapsto \mathcal{A}_+(\mathcal{O}) := \mathcal{A}(I) \lor \mathcal{A}(J)$$

Dual to trivial

$$\mathcal{O} \mapsto \mathcal{A}^{dual}_{+}(\mathcal{O}) := \mathcal{A}(K)' \cap \mathcal{A}(L).$$

 $\mathbf{2}$

0.2. Relations between different mathematical objects. Fix a particular 1d CN $\mathcal{A}(I)$ and examine BCFT over \mathcal{A} . Focus on Haag dual BCFTs over \mathcal{A} . These are in 1-1 correspondence with chiral extensions of \mathcal{A} , i.e. 1d CN which extend \mathcal{A} . These in turn are classified by superfactors of \mathcal{A} (of index μ_2). These are in bijection with Frobenius algebras (in some category coming from \mathcal{A}).

BCFT over \mathcal{A}

The construction going from a Haag-dual BCFT over \mathcal{A} to a chiral extension is *gen*, and going the other way is *incl*.

Definition. By locality $\mathcal{B}_+(\mathcal{O}) \subset \mathcal{B}_+(\mathcal{O}')'$. The BCFT \mathcal{B} is *Haag dual* if this inclusion is an equality.

Definition. Given a BCFT \mathcal{B}_+ over \mathcal{A} , its boundary net \mathcal{B}^{gen} is given by

 $\mathcal{B}^{gen}(I) := \mathcal{B}_+(W_I),$

where W_I is the finite wedge determined by I, and $\mathcal{B}_+(W_I)$ is the algebra generated by $\mathcal{B}_+(O)$ for all $O \subset W_I$. This is possibly non-local, though relatively local with respect to \mathcal{A} ; i.e.

$$[\mathcal{A}(I), \mathcal{B}(J)] = 0.$$

Theorem 0.1 (or definition). Given an irreducible (non-local) chiral extension \mathcal{B} of \mathcal{A} , the induced BCFT

$$B^{ind}_+(\mathcal{O}) := \mathcal{B}(L) \cap \mathcal{B}(K)'.$$

Then, we check that

•
$$(\mathcal{B}^{ind}_+)^{gen} = \mathcal{B}$$

•
$$(\mathcal{B}^{gen})^{ind}_{\perp} = \mathcal{B}^{dual}$$

Facts:

• Given chiral extensions $I \mapsto \mathcal{B}(I) \supset \mathcal{A}(I)$, we have a consistent family of conditional expectations

$$\varepsilon_I: \mathcal{B}(I) \to \mathcal{A}(I)$$

such that $I \subset J \Rightarrow \varepsilon_I|_J = \varepsilon_J$.

• If irreducible and finite index, then ε_I is implemented by $\varepsilon : \mathcal{B} \to \mathcal{A}$.

Theorem 0.2 (Reeh–Schlieder). The vaccum vector Ω is cyclic and separating for any $\mathcal{B}(I)$.

Theorem 0.3. Classifying chiral extensions \mathcal{B} of \mathcal{A} is equivalent to classifying "extensions" of $\mathcal{A}(I)$.

0.3. Superfactors to Frobenius algebras. What is the "some category coming from \mathcal{A} ?" Objects are elements in End(A), and morphisms are intertwiners $a \in \mathcal{A}$ such that for $a \in (\rho, \sigma)$, then $a\rho(x) = \sigma(x)a$.

Frobenius algebra in a category C consists of an object Q, multiplication $m: Q \otimes Q \to Q, \eta: 1 \to Q$ such that (Q, m, η) is a monoid. $\Delta: Q \to Q \otimes Q, \epsilon: Q \to 1$ such that (Q, Δ, ϵ) is a co-monoid. And, with I = H relation: $(m \otimes 1) \circ (1 \otimes \Delta) = \Delta \circ m$.

Example. G finite group with group ring $\mathbb{C}[G] = \mathbb{C}\{g \in G\}$. Then

$$m(g,h) = gh$$

$$\epsilon(\sum a_g g) = a_e$$

$$\Delta(g) = \sum_{ab=g} a \otimes b$$

$$\eta(1) = 1$$

Example. Subfactors and the canonical endomorphism. Let $N \subset M$ be type III₁ subfactors, J_N, J_M the modular conjugations of N, M (with respect

4

to a cyclic and separating vacuum vector $\Omega \in H$).

$$\begin{array}{c} \gamma: M \longrightarrow N \\ x \longmapsto J_N J_M x J_M^* J_N \end{array}$$

Given $N \subset M$, we define a Frobenius algebra in $\operatorname{End}(M)$. Let γ be the canonical endomorphism $\gamma = \iota \overline{\iota}$, where $\iota : N \hookrightarrow M$, $\overline{\iota} : M \to N$.¹

Given a Frobenius algebra in End(M), it gives a subfactor $E: M \to N$ by defining $E(x) = m\rho(x)\Delta$.

Proof: This is a bimodule map whose image is an algebra! Want to show $E(xE(y))=E(x)E(y) \label{eq:expansion}$

End proof.

 ${}^1\overline{\iota} = \iota^{-1} \circ \gamma$, where γ is from the example above.