BOUNDARY CFTS AND THEIR CLASSIFICATION VIA FROBENIUS ALGEBRAS

SPEAKER: EMILY PETERS
TYPIST: CORBETT REDDEN

Abstract. Notes from the "Conformal Field Theory and Operator Algebras workshop," August 2010, Oregon.

Idea/Motivation: We're really doing this because we'd like to do all this in 4 -dimensions, but its so intractable that we do it in 1 or 2 dimensions. Boundary CFTs are a nice intermediate point.

We always assume locality in 1-dimension: if $I \cap J=\emptyset$ then $[\mathcal{A}(I), \mathcal{A}(J)]=$ 0 (they commute). In 2-dimensions, we want them to be in their causal complements.

Let $\mathcal{O}_{1}, \mathcal{O}_{2} \in M^{2}, \mathcal{O}_{1}$ in the causal complement of \mathcal{O}_{2}.

[[[Finish picture]]] <==
Definition. Complete Rationality (of a net on \mathbb{R}) means you have

Date: August 20, 2010.
Available online at http://math.mit.edu/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!
(1) Split property: $I \cap J=\emptyset \Rightarrow \mathcal{A}(I) \vee \mathcal{A}(J)=\mathcal{A}(I) \otimes \mathcal{A}(J)$
(2) Strong additivity: $\mathcal{A}((a, b)) \vee \mathcal{A}((b, c))=\mathcal{A}((a, c))$
(3) Finite index: $\mu_{2}<\infty$

Let $M_{+}=$positive Minkowski space $=\{(t, x) \mid x>0\}$. Consider double cones \mathcal{O}

0.1. Boundary CFTs.

Definition. A boundary CFT over a given 1-d conformal net \mathcal{A} is an assignment $\mathcal{O} \mapsto \mathcal{B}_{+}(\mathcal{O}) \subset B(H)$ satisfying locality, isotony, equivariance with respect to an action of $P S L_{2}(\mathbb{R})$ on M_{+}and H, and

- existence and uniqueness of a vacuum vector $\Omega \in B(H)$,
- covariance: $U(g) \mathcal{B}_{+}(\mathcal{O}) U(g)^{*}=\mathcal{B}_{+}(g \mathcal{O})$ when $g \mathcal{O}$ is a double cone,
- an action π of the net \mathcal{A} on H, covariant under $P S L_{2}(\mathbb{R})$; i.e.

$$
U(g) \pi(\mathcal{A}(I)) U\left(g^{*}\right)=\mathcal{A}(g I)
$$

- Joint irreduciblity: Where $\pi(\mathcal{A})^{\prime \prime}=$ the vNA generated by all of $\pi(\mathcal{A}(I))$, then

$$
\pi(\mathcal{A})^{\prime \prime} \vee \mathcal{B}(\mathcal{O})=B(H)
$$

Example. Trivial BCFT over \mathcal{A} is

$$
\mathcal{O} \mapsto \mathcal{A}_{+}(\mathcal{O}):=\mathcal{A}(I) \vee \mathcal{A}(J)
$$

Dual to trivial

$$
\mathcal{O} \mapsto \mathcal{A}_{+}^{\text {dual }}(\mathcal{O}):=\mathcal{A}(K)^{\prime} \cap \mathcal{A}(L)
$$

0.2. Relations between different mathematical objects. Fix a particular 1d CN $\mathcal{A}(I)$ and examine BCFT over \mathcal{A}. Focus on Haag dual BCFTs over \mathcal{A}. These are in 1-1 correspondence with chiral extensions of \mathcal{A}, i.e. 1 d CN which extend \mathcal{A}. These in turn are classified by superfactors of \mathcal{A} (of index μ_{2}). These are in bijection with Frobenius algebras (in some category coming from \mathcal{A}).

The construction going from a Haag-dual BCFT over \mathcal{A} to a chiral extension is gen, and going the other way is incl.
Definition. By locality $\mathcal{B}_{+}(\mathcal{O}) \subset \mathcal{B}_{+}\left(\mathcal{O}^{\prime}\right)^{\prime}$. The BCFT \mathcal{B} is Haag dual if this inclusion is an equality.

Definition. Given a BCFT \mathcal{B}_{+}over \mathcal{A}, its boundary net $\mathcal{B}^{\text {gen }}$ is given by

$$
\mathcal{B}^{\text {gen }}(I):=\mathcal{B}_{+}\left(W_{I}\right)
$$

where W_{I} is the finite wedge determined by I, and $\mathcal{B}_{+}\left(W_{I}\right)$ is the algebra generated by $\mathcal{B}_{+}(O)$ for all $O \subset W_{I}$. This is possibly non-local, though relatively local with respect to \mathcal{A}; i.e.

$$
[\mathcal{A}(I), \mathcal{B}(J)]=0
$$

Theorem 0.1 (or definition). Given an irreducible (non-local) chiral extension \mathcal{B} of \mathcal{A}, the induced $B C F T$

$$
B_{+}^{\text {ind }}(\mathcal{O}):=\mathcal{B}(L) \cap \mathcal{B}(K)^{\prime}
$$

Then, we check that

- $\left(\mathcal{B}_{+}^{\text {ind }}\right)^{\text {gen }}=\mathcal{B}$
- $\left(\mathcal{B}^{\text {gen }}\right)_{+}^{\text {ind }}=\mathcal{B}^{\text {dual }}$

Facts:

- Given chiral extensions $I \mapsto \mathcal{B}(I) \supset \mathcal{A}(I)$, we have a consistent family of conditional expectations

$$
\varepsilon_{I}: \mathcal{B}(I) \rightarrow \mathcal{A}(I)
$$

such that $\left.I \subset J \Rightarrow \varepsilon_{I}\right|_{J}=\varepsilon_{J}$.

- If irreducible and finite index, then ε_{I} is implemented by $\varepsilon: \mathcal{B} \rightarrow \mathcal{A}$.

Theorem 0.2 (Reeh-Schlieder). The vaccum vector Ω is cyclic and separating for any $\mathcal{B}(I)$.

Theorem 0.3. Classifying chiral extensions \mathcal{B} of \mathcal{A} is equivalent to classifying "extensions" of $\mathcal{A}(I)$.
0.3. Superfactors to Frobenius algebras. What is the "some category coming from \mathcal{A} ?" Objects are elements in $\operatorname{End}(A)$, and morphisms are intertwiners $a \in \mathcal{A}$ such that for $a \in(\rho, \sigma)$, then $a \rho(x)=\sigma(x) a$.

Frobenius algebra in a category \mathcal{C} consists of an object Q, multiplication $m: Q \otimes Q \rightarrow Q, \eta: 1 \rightarrow Q$ such that (Q, m, η) is a monoid. $\Delta: Q \rightarrow$ $Q \otimes Q, \epsilon: Q \rightarrow 1$ such that (Q, Δ, ϵ) is a co-monoid. And, with $I=H$ relation: $(m \otimes 1) \circ(1 \otimes \Delta)=\Delta \circ m$.

Example. G finite group with group ring $\mathbb{C}[G]=\mathbb{C}\{g \in G\}$. Then

$$
\begin{aligned}
m(g, h) & =g h \\
\epsilon\left(\sum a_{g} g\right) & =a_{e} \\
\Delta(g) & =\sum_{a b=g} a \otimes b \\
\eta(1) & =1
\end{aligned}
$$

Example. Subfactors and the canonical endomorphism. Let $N \subset M$ be type III_{1} subfactors, J_{N}, J_{M} the modular conjugations of N, M (with respect
to a cyclic and separating vacuum vector $\Omega \in H$).

$$
\begin{aligned}
\gamma: M & \longrightarrow N \\
x & \longmapsto J_{N} J_{M} x J_{M}^{*} J_{N}
\end{aligned}
$$

Given $N \subset M$, we define a Frobenius algebra in $\operatorname{End}(M)$. Let γ be the canonical endomorphism $\gamma=\iota \bar{\iota}$, where $\iota: N \hookrightarrow M, \bar{\iota}: M \rightarrow N .{ }^{1}$

Given a Frobenius algebra in $\operatorname{End}(M)$, it gives a subfactor $E: M \rightarrow N$ by defining $E(x)=m \rho(x) \Delta$.

Proof: This is a bimodule map whose image is an algebra! Want to show

$$
E(x E(y))=E(x) E(y)
$$

End proof.
${ }^{1_{\bar{\iota}}}=\iota^{-1} \circ \gamma$, where γ is from the example above.

