OVERVIEW (MONDAY 10:15AM)

SPEAKER: HIRO TANAKA

TYPIST: EMILY PETERS

Abstract. Notes from the "Conformal Field Theory and Operator Algebras workshop," August 2010, Oregon.

Overview: V_{f}, V_{g} are irreps of G (in this talk, we use $G=S U(N)$). We have decompositions $V_{f} \otimes V_{g}=\bigoplus_{h} N_{f g}^{h} V_{h}$.

Meanwhile, if H_{f} and H_{g} are irreps of $\tilde{L G}$, we have decompositions $H_{f} \boxtimes$ $H_{g}=\bigoplus_{h} N_{f g}^{h} \cdot \operatorname{sign}(\sigma) H_{h}$ (for soe σ in the affine Weyl group $\Lambda_{0} \rtimes S_{N}$.

Note. Impliciti in this formula is semisimplicity of the Connes fusion category.

Okay, let's get down to details.
Representations of $S U(N)$:
Two principals to take for granted (cause I don't want to explain them):

1. studying complex reps of some simply connected Lie group G is the same as studying complex reps of a Lie algebra \mathfrak{g}.
2. complex reps of \mathfrak{g} are in 1-1 correspondence with complex reps of $\mathfrak{g} \otimes_{\mathbb{R}} \mathbb{C}$.

Goal: get to define the works signature, highest weight vector.
Down to business.
Example. $\left(s u=\right.$ Skew hermetian 3 -by- 3 matrices) $s u(3) \otimes \mathbb{C}=s l_{3}(\mathbb{C})$.
$s l_{3}$ acts on $s l_{3}$, the adjoint rep, by: Given X in first, v in second, $X(v)=$ $[X, v]=X v-v X$.

This rep splits into a sum of eigenspaces; $\mathfrak{h} \subset s l_{3}$ is a Cartan subalgebra; $\mathfrak{h}=$ diagonal matrices in Sl_{3}.

How does $\mathfrak{h} \circlearrowright s l_{3}$?
\mathfrak{h} acting on \mathfrak{h} kills \mathfrak{h} (they commute).
Define $E_{i j}$ for $i \neq j$ to be the matrix with one 1 , in position i, j, and the rest of the entries are 0 . If $X=\operatorname{diag}\left(a_{1}, a_{2}, a_{3}\right)$ then $X\left(E_{i j}\right)=\left(a_{i}-a_{j}\right) E_{i j}$.
Definition. Let $\mathrm{E}_{i} \in \mathfrak{h}^{\vee}=\operatorname{hom}(\mathfrak{h}, \mathbb{C}) ; L_{i}: X \mapsto(X)_{i i}$. Then $X\left(E_{i j}\right)=$ $\left(L_{i}-L_{j}\right)(X) E_{i j}$.

Picture 1: how the Cartan subalgebra acts on $s l_{3}$.
okay, now how do the off-diagonal elements of $s l_{3}$ act?
Claim. The off-diagonal matrices, say v_{β}, will take some $v \in \mathfrak{g}_{\alpha}$ (here, $\mathfrak{g}=\operatorname{sl}_{3}$ and $\alpha \in \mathfrak{h}^{\vee}$) and take it to $v_{\alpha+\beta} \in \mathfrak{g}_{\alpha+\beta}$. elements $\alpha \in \mathfrak{h}^{\vee}$ are called weights of the adjoint rep.

Proof. Take $X \in \mathfrak{h}$. Need to show $X\left(v_{\beta}\left(v_{\alpha}\right)\right)=(\alpha+\beta)(X) v_{\beta}\left(v_{\alpha}\right)$. By Liebniz,

$$
\begin{aligned}
X\left(v_{\beta}\left(v_{\alpha}\right)\right) & =v_{\beta}\left(X\left(v_{\alpha}\right)\right)+\left[X, v_{\beta}\right]\left(v_{\alpha}\right) \\
& =v_{\beta}\left(\alpha(X) v_{\alpha}\right)+\beta(X) v_{\beta}\left(v_{\alpha}\right) \\
& =(\alpha(X)+\beta(X)) v_{\beta}\left(v_{\alpha}\right)
\end{aligned}
$$

More picture 1.
The upshot: $E_{i j}, i \leq j$ - the upper triangular matrices - "raise vectors". Lower triangular matrices "lower vectors". Ie, we've defined a partial order relation on these vector spaces, based on distance (and direction) from line.

Observation: there's some $\alpha \in \mathfrak{h}^{\vee}$ such that \mathfrak{g}_{α} is in the kernel of all raising operators.

Definition. Such an α is called the highest weight of a rep.
Example. $\alpha=L_{1}-L_{3}$ is the highest weight of the adjoint representation.
Example. $s l_{3} \circlearrowright \mathbb{C}^{3}=V$ by $V=\mathbb{C} e_{1} \oplus \mathbb{C} e_{2} \oplus \mathbb{C} e_{3}$ and $\mathbb{C} e_{1}=V_{L_{1}}, \mathbb{C} e_{2}=V_{L_{2}}$, $\mathbb{C} e_{3}=V_{L_{3}}$.
picture 2

Observation: The orbit of e_{1} under lowering operators recovers the entire representation V. This is true in general.

Fact. V is an irrep of $s l_{n}(\mathbb{C})$ and v_{α} is the unique highest weight vector, then V is recovered by applying lowering operators of v_{α}.

Now, on to the idea of signature: how to find highest weight vectors.
Definition. A signature (called "positive weight" by people other than Wasserman) is $g \in \mathbb{Z}^{N}$ such that $f_{1} \geq f_{2} \geq \cdots \geq f_{N} \geq 0$.

Question. Is there a rep of $s l_{N}(\mathbb{C})$ such that the highest weight vector has weight $\Sigma f_{i} L_{i}$?
Answer. Yes! Take $e_{f}=\left(e_{1}\right)^{\otimes\left(f_{1}-f_{2}\right)} \otimes\left(e_{1} \wedge e_{2}\right)^{\otimes\left(f_{2}-f_{3}\right)} \otimes \cdots\left(e_{1} \wedge \cdots \wedge\right.$ $\left.e_{n}\right)^{\otimes\left(f_{n}\right)} \in V^{\otimes\left(\Sigma f_{i}\right)}$.

Example. In the adjoint action $s l_{3} \circlearrowright s l_{3}$, the highest weight vector is $V_{\alpha}, \alpha=L_{1}-L_{3}$. What's the signature? $(1,0,-1)$ is not a valid signature; fortunately it's equal to $(2,1,0)$. This is because:

Fact. $f=(a, a, \ldots, a)+f$ as the vector sum from (a, a, \ldots, a) is zero.
Definition. Young diagrams: picture 3
Given a signature f, the associated Young diagram to f has f_{i} boxes in row 2.

Theorem 0.1. Pieri rule: Notation: $[k]=(1,1, \ldots, 1)$ - young diagram having k vertical boxes. $V_{f} \otimes V_{[k]}=\bigoplus_{g \geq_{k} f} V_{g}$ where $g \geq_{k} f$ is obtained by adding k boxes to f, without adding two boxes in any row.

Example. pic 4
Question. What is trivial rep?
Remark. When looking at reps of $L S \tilde{U}(N)$, signatures need to be permissible, ie, $f_{1}-f_{N} \leq \ell$.

Theorem 0.1. Verlinde Formula: If

$$
V_{f} \otimes V_{g}=\bigoplus N_{f g}^{h} V_{h}
$$

then

$$
H+f \boxtimes H_{g}=\bigoplus_{h} N_{g} h^{h} \operatorname{sign}\left(\sigma_{h}\right) H_{h^{\prime}} .
$$

(Go back and forth between $\operatorname{SU}(N)$ and loops by looking at the rep where the auxilery action on the circle, acts trivially). Here h^{\prime} is obtained from h but must be permissible. Details in Wasserman

Action of affine Weyl group:

Definition. $\Lambda_{0}=\left\{(N+\ell)\left(m_{i}\right) \mid\left(m_{i}\right) \in \mathbb{Z}^{n}, \Sigma m_{i}=0\right\} ; S_{N}=$ symm group on N letters.

The affine Weyl group is $\Lambda_{0} \rtimes S_{n}$ (translations and reflections).
L_{2}

$$
\mathfrak{h} \longrightarrow L_{1}
$$

Example.
Question.
Answer.
Definition.

