OPERATOR ALGEBRAS AND CONFORMAL FIELD THEORIES WORKSHOP: DAY 1, TALK 4

CONTENTS

1.	Fermionic Fock space: Ryan Grady	1
1.1.	. Unitary structure	2
1.2.	. A representation of LU(N)	3

1. FERMIONIC FOCK SPACE: RYAN GRADY

We've seen reps of loop groups. Now we construct a particular rep of LU(N) via a section of the trivial bundle $S^1 \times \mathbb{C}^N \to S^1$. We'll use

- Clifford algebras
- Fock reps

Let (H, \langle, \rangle) be a \mathbb{C} -Hilbert space, $\operatorname{Cliff}(H)$ a unital algebra with involution. We can generate $\operatorname{Cliff}(H)$ using a linear map $c: H \to H$ satisfying

$$c(f)c(g) + c(g)c(f) = 0$$

and

$$c(f)c(g)^* + c(g)^*c(f) = \langle f, g \rangle 1$$

We can also realize $\operatorname{Cliff}(H)$ as a quotient of the tensor algebra $(T(H) = \bigoplus_i H^{\otimes i})$,

$$\operatorname{Cliff}(H) = T(H) / (f \otimes f - \langle f, f \rangle)$$

(Note: this c is Wassermann's a.)

 $\operatorname{Cliff}(H)$ has a rep on $\bigwedge H$ (wave representation),

$$\pi(c(f))(x) := f \wedge x$$

and we have a cyclic vector $\Omega = 1 \in \bigwedge^0 H = \mathbb{C}$. The *c* is creation, *a* is annihilation, $a(f) := c(f)^*$, then

$$a(f)(\omega_0 \wedge \cdots \wedge \omega_n) := \sum_{j=0}^n (-1)^j \langle f, \omega_j \rangle (\omega_0 \wedge \cdots \wedge \widehat{\omega}_j \wedge \cdots \wedge \omega_n)$$

<u>Fact:</u> a(f), c(f) are adjoint wrt

$$\langle \omega_0 \wedge \cdots \wedge \omega_n, \eta_0 \wedge \cdots \wedge \eta_n \rangle = \det(\langle \omega_i, \eta_j \rangle)$$

Proposition 1.1. $\bigwedge H$ is irreducible as a $\operatorname{Cliff}(H)$ representation.

Proof. For $T \in \text{End}(\bigwedge H)$ which commutes with all a(f)'s, then $T\Omega = \lambda \Omega$ (follows as $\bigcap \ker a(f) = \mathbb{C}\Omega$). If, in addition, T commutes with all c(f)'s, then $T = \lambda I$.

<u>Comment</u> $\bigwedge H$ is a Hilbert space completion of the direct sum of the finite exterior powers of H.

So, this is a representation, how do we get more?

1.1. Unitary structure. Let (V, (,)) be a \mathbb{R} -Hilbert space. A unitary structure is a $J \in O(V)$ such that $J^2 = -I$. V_J is a \mathbb{C} -Hilbert space where multiplication by i is multiplication by J and the (Hermitian) inner product is

$$\langle v,w\rangle:=(v,w)+i(v,Jw)$$

Now define a projection operator

$$P_J := \frac{1}{2}(I - iJ) \in \operatorname{End}(V_J)$$

Definition. The Fermionic Fock space, \mathcal{F}_P is

$$\mathcal{F}_P := \bigwedge (PH) \widehat{\otimes} \bigwedge (P^{\perp}H)^*$$

(where $H = V_J$) That is, take $\bigwedge(PH), \bigwedge(P^{\perp}H)$, take Hilbert space completion, then form the tensor product of the Hilbert spaces. Thiss is an irreducible representation of $\operatorname{Cliff}(V_J)$,

$$\pi_P(c(f)) = c(Pf) \otimes 1 + 1 \otimes c((P^{\perp}f)^*)^*$$

<u>Note</u>: *H* is a complex Hilbert space, defining *P* is equivalent to defining a new complex structure where *PH* is the *i*-eigenspace and $P^{\perp}H$ is the *-i*-eigenspace.

Theorem 1.2 (I. Segal-Shale equivalence criterion). The Fock reps π_P and π_Q are unitarily equivalent if and only if P-Q is Hilbert-Schmidt (i.e. $\{e_i\}$ a basis for H, $\sum ||(P-Q)e_i||^2 < \infty$.)

 $u \in U(H)$ induces an automorphism of $\operatorname{Cliff}(H), c(f) \mapsto c(uf)$. We say it is *implemented* in π_P (or \mathcal{F}_P) if

$$\pi_P(c(uf)) = U\pi(c(f))U^*$$

for some unitary $U \in U(\mathcal{F}_P)$ unique up to scalar.

Proposition 1.3. $u \in U(H)$ is implemented if and only if [u, P] is Hilbert-Schmidt.

Definition. The restricted unitary group is

 $U_{res} = \{ u \in U(H) \mid u \text{ is implemented in } \mathcal{F}_P \}$

Thus, we have a representation $U_{res}(H) \to PU(\mathcal{F}_P)$, the "basic representation."

If $u \in U(H)$ and [u, P] = 0, then u is implemented in \mathcal{F}_P and is "canonically quantized."

1.2. A representation of LU(N). Let $H = L^2(S^1) \otimes \mathbb{C}^N$, $P : H \to H_{\geq 0}$ where $H_{\geq 0}$ is the space of functions with non-negative Fourier coefficients (boundary values of functions on the disk). For $f \in C^{\infty}(S^1, \operatorname{End}(\mathbb{C}^N))$, multiplication by f defines an operator m(f) on H.

<u>Fact:</u> $||[P, m(f)]||_2 \le ||f'||_2$.

So, in particular, $f \in LU(N)$ is implemented in \mathcal{F}_P . Thus, we have a projective representation of LU(N) on \mathcal{F}_P . This is the "fundamental rep." Thinking of the circle as the boundary of a conformal disk, we look at the group of Moebius transformations, i.e. the transformations of the circle which preserve the conformal structure.

$$SU_{\pm}(1,1) = \left\{ \left(\begin{array}{cc} \alpha & \beta, \\ \overline{\beta} & \overline{\alpha} \end{array} \right) : |\alpha|^2 - |\beta|^2 = \pm 1 \right\}$$

is a double cover of the Moebius group. For $g \in SU_+(1,1)$,

$$g(z) = \frac{\alpha z + \beta}{\overline{\beta}z + \overline{\alpha}}$$

gives a unitary action on $H = L^2(S^1) \otimes \mathbb{C}^N$,

$$(V_g \cdot f)(z) = \frac{f(g^{-1}(z))}{\alpha - \overline{\beta}z}$$

(g is the action on the circle, V_g is the induced action on the Hilbert space.) Note: |z| < 1, $|\alpha| > |\beta|$, then $(\alpha - \overline{\beta}z)^{-1}$ is holomorphic so V_g commutes with P so the action is canonically quantized.

For $F = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$, $(V_F \cdot f)(z) = \frac{f(z^{-1})}{z}$

so $V_F P V_F = I - P$.

We have a U(1) action on H given by multiplication by z. This commutes with projection so is canonically quantized: let U_z be the action on \mathcal{F}_P .

Proposition 1.4. If π is the rep of LSU(N) on \mathcal{F}_P and U_z is the U(1) action on \mathcal{F}_P , then

$$\pi(g)U_z\pi(g)^* = U_z$$