OPERATOR ALGEBRAS AND CONFORMAL FIELD THEORIES WORKSHOP: DAY 1, TALK 4

Contents

1. Fermionic Fock space: Ryan Grady 1
1.1. Unitary structure 2
1.2. A representation of $\mathrm{LU}(\mathrm{N}) \quad 3$

1. Fermionic Fock space: Ryan Grady

We've seen reps of loop groups. Now we construct a particular rep of $\mathrm{LU}(\mathrm{N})$ via a section of the trivial bundle $S^{1} \times \mathbb{C}^{N} \rightarrow S^{1}$. We'll use

- Clifford algebras
- Fock reps

Let $(H,\langle\rangle$,$) be a \mathbb{C}$-Hilbert space, $\operatorname{Cliff}(H)$ a unital algebra with involution. We can generate Cliff (H) using a linear map $c: H \rightarrow H$ satisfying

$$
c(f) c(g)+c(g) c(f)=0
$$

and

$$
c(f) c(g)^{*}+c(g)^{*} c(f)=\langle f, g\rangle 1
$$

We can also realize $\operatorname{Cliff}(H)$ as a quotient of the tensor algebra $(T(H)=$ $\left.\bigoplus_{i} H^{\otimes i}\right)$,

$$
\operatorname{Cliff}(H)=T(H) /(f \otimes f-\langle f, f\rangle)
$$

(Note: this c is Wassermann's a.)
Cliff (H) has a rep on $\wedge H$ (wave representation),

$$
\pi(c(f))(x):=f \wedge x
$$

and we have a cyclic vector $\Omega=1 \in \Lambda^{0} H=\mathbb{C}$. The c is creation, a is annihilation, $a(f):=c(f)^{*}$, then

$$
a(f)\left(\omega_{0} \wedge \cdots \wedge \omega_{n}\right):=\sum_{j=0}^{n}(-1)^{j}\left\langle f, \omega_{j}\right\rangle\left(\omega_{0} \wedge \cdots \wedge \widehat{\omega}_{j} \wedge \cdots \wedge \omega_{n}\right)
$$

Fact: $a(f), c(f)$ are adjoint wrt

$$
\left\langle\omega_{0} \wedge \cdots \wedge \omega_{n}, \eta_{0} \wedge \cdots \wedge \eta_{n}\right\rangle=\operatorname{det}\left(\left\langle\omega_{i}, \eta_{j}\right\rangle\right)
$$

Proposition 1.1. $\wedge H$ is irreducible as a $\operatorname{Cliff}(H)$ representation.

Proof. For $T \in \operatorname{End}(\Lambda H)$ which commutes with all $a(f)$'s, then $T \Omega=\lambda \Omega$ (follows as $\bigcap \operatorname{ker} a(f)=\mathbb{C} \Omega$). If, in addition, T commutes with all $c(f)$'s, then $T=\lambda I$.

Comment ΛH is a Hilbert space completion of the direct sum of the finite exterior powers of H.
So, this is a representation, how do we get more?
1.1. Unitary structure. Let $(V,()$,$) be a \mathbb{R}$-Hilbert space. A unitary structure is a $J \in O(V)$ such that $J^{2}=-I . \quad V_{J}$ is a \mathbb{C}-Hilbert space where multiplication by i is multiplication by J and the (Hermitian) inner product is

$$
\langle v, w\rangle:=(v, w)+i(v, J w)
$$

Now define a projection operator

$$
P_{J}:=\frac{1}{2}(I-i J) \in \operatorname{End}\left(V_{J}\right)
$$

Definition. The Fermionic Fock space, \mathcal{F}_{P} is

$$
\mathcal{F}_{P}:=\bigwedge(P H) \widehat{\otimes} \bigwedge\left(P^{\perp} H\right)^{*}
$$

(where $H=V_{J}$) That is, take $\bigwedge(P H), \bigwedge\left(P^{\perp} H\right)$, take Hilbert space completion, then form the tensor product of the Hilbert spaces. Thiss is an irreducible representation of $\operatorname{Cliff}\left(V_{J}\right)$,

$$
\pi_{P}(c(f))=c(P f) \otimes 1+1 \otimes c\left(\left(P^{\perp} f\right)^{*}\right)^{*}
$$

Note: H is a complex Hilbert space, defining P is equivalent to defining a new complex structure where $P H$ is the i-eigenspace and $P^{\perp} H$ is the $-i$ eigenspace.

Theorem 1.2 (I. Segal-Shale equivalence criterion). The Fock reps π_{P} and π_{Q} are unitarily equivalent if and only if $P-Q$ is Hilbert-Schmidt (i.e. $\left\{e_{i}\right\}$ a basis for $H, \sum\left\|(P-Q) e_{i}\right\|^{2}<\infty$.)
$u \in U(H)$ induces an automorphism of $\operatorname{Cliff}(H), c(f) \mapsto c(u f)$. We say it is implemented in π_{P} (or \mathcal{F}_{P}) if

$$
\pi_{P}(c(u f))=U \pi(c(f)) U^{*}
$$

for some unitary $U \in U\left(\mathcal{F}_{P}\right)$ unique up to scalar.
Proposition 1.3. $u \in U(H)$ is implemented if and only if $[u, P]$ is HilbertSchmidt.

Definition. The restricted unitary group is

$$
U_{\text {res }}=\left\{u \in U(H) \mid u \text { is implemented in } \mathcal{F}_{P}\right\}
$$

Thus, we have a representation $U_{\text {res }}(H) \rightarrow P U\left(\mathcal{F}_{P}\right)$, the "basic representation."

If $u \in U(H)$ and $[u, P]=0$, then u is implemented in \mathcal{F}_{P} and is "canonically quantized."
1.2. A representation of $\mathbf{L U}(\mathbf{N})$. Let $H=L^{2}\left(S^{1}\right) \otimes \mathbb{C}^{N}, P: H \rightarrow H_{\geq 0}$ where $H_{\geq 0}$ is the space of functions with non-negative Fourier coefficients (boundary values of functions on the disk). For $f \in C^{\infty}\left(S^{1}, \operatorname{End}\left(\mathbb{C}^{N}\right)\right.$), multiplication by f defines an operator $m(f)$ on H.

Fact: $\|[P, m(f)]\|_{2} \leq\left\|f^{\prime}\right\|_{2}$.
So, in particular, $f \in L U(N)$ is implemented in \mathcal{F}_{P}. Thus, we have a projective representation of $L U(N)$ on \mathcal{F}_{P}. This is the "fundamental rep." Thinking of the circle as the boundary of a conformal disk, we look at the group of Moebius transformations, i.e. the transformations of the circle which preserve the conformal structure.

$$
S U_{ \pm}(1,1)=\left\{\left(\begin{array}{cc}
\alpha & \beta, \\
\bar{\beta} & \bar{\alpha}
\end{array}\right):|\alpha|^{2}-|\beta|^{2}= \pm 1\right\}
$$

is a double cover of the Moebius group.
For $g \in S U_{+}(1,1)$,

$$
g(z)=\frac{\alpha z+\beta}{\bar{\beta} z+\bar{\alpha}}
$$

gives a unitary action on $H=L^{2}\left(S^{1}\right) \otimes \mathbb{C}^{N}$,

$$
\left(V_{g} \cdot f\right)(z)=\frac{f\left(g^{-1}(z)\right)}{\alpha-\bar{\beta} z}
$$

(g is the action on the circle, V_{g} is the induced action on the Hilbert space.) Note: $|z|<1,|\alpha|>|\beta|$, then $(\alpha-\bar{\beta} z)^{-1}$ is holomorphic so V_{g} commutes with P so the action is canonically quantized.
For $F=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$,

$$
\left(V_{F} \cdot f\right)(z)=\frac{f\left(z^{-1}\right)}{z}
$$

so $V_{F} P V_{F}=I-P$.
We have a $U(1)$ action on H given by multiplication by z. This commutes with projection so is canonically quantized: let U_{z} be the action on \mathcal{F}_{P}.

Proposition 1.4. If π is the rep of $\operatorname{LSU}(N)$ on \mathcal{F}_{P} and U_{z} is the $U(1)$ action on \mathcal{F}_{P}, then

$$
\pi(g) U_{z} \pi(g)^{*}=U_{z}
$$

