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Abstract. Notes from the “Conformal Field Theory and Operator Al-

gebras workshop,” August 2010, Oregon.

The plan is to relate Connes fusion and endomorphisms.

In this talk, M is always a type III factor. For our purposes, it suffices to
have the following property:

Fact. Any representation of M on a separable Hilbert space, is implemented
by a unitary operator. Another way of saying this is that any two represen-
tations are equivalent.

Definition. An (M,M) bimodule is a Hilbert space X with commuting
actions of M and Mop.

Definition. An endomorphism of M is a unital *-homomorphism of M into
M .

Example. L2(M) is a trivial bimodule. For x, y ∈ M and ξ ∈ L2(M),
x · ξ · y.

Example. If ρ is an endomorphism of M , then it also acts on L2(M). We
define ρ(x) · ξ · y = ρ(x)JY ∗Jξ. Call this bimodule Xρ.

Proposition 0.1. Any bimodule is unitarily equivalent to some Xρ.

Proof. From the first fact, as representation of Mop, X and L2(M) are
equivalent. We may assume that X = L2(M) as Mop-modules. The action
of M commutes with Mop. (Mop)′ = M ; the image of M is M . �

Proposition 0.2. Xρ1 ≃ Xρ2 iff there is a u ∈ U(M) such that uρ1(x)u
∗ =

ρ2(x).
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Proof. in one direction, u commutes withMop. In the other, let u implement
the equivalence. u must commute with Mop = M ′, so u ∈ M . �

direct sum subobject
bimodule X ⊕ Y invariant subspace fusion

endomorphisms P1 ⊥ P2, P1 + P2 = I, P ∈ M , [P, ρ(x)] = 0, composition
vI : Pi ≃ I: V : P ≃ I. V ρ(x)V ∗. ρ2 ◦ ρ1.

V1ρ1(x)V
∗

1 + V2ρ2(x)V
∗

2

LetX, Y be bimodules. X = Hom(L2(M)M ,XM ) and Y = Hom(ML2(M),MY ).

We consider X⊗Y with an inner product, 〈x1⊗y1, x2⊗y2〉 = 〈x∗
2
x1y

∗

2
y1Ω,Ω〉

Here we use x∗2x1 ∈ M and y∗2y1 ∈ Mop. (this is because x ∈ Hom(L2(M)M ,XM )
and x∗ ∈ Hom(XM , L2(M)M ) gives us x∗x ∈ Hom(L2(M)M , L2(M)M ) ie
x∗x ∈ M .)

Lemma 0.3. The form thus defined on X ⊗ Y is an inner product

Proof. Show positive definiteness.

Let z =
∑

i xi ⊗ yi; then 〈z, z〉 =
∑

i,j〈x
∗

i xjy
∗

i yjΩ,Ω〉

Now x = (x∗i xj) ∈ Mn(M); rewrite it as

x =











x∗1
x∗2
...
x∗n











·
(

x1 x2 . . . xn
)

We can write x = a∗a where a ∈ Mn(M). Similarly for y, y = b∗b.

So, 〈z, z〉 =
∑

i,j〈x
∗

i xjy
∗

i yjΩ,Ω〉 =
∑

i,j

∑

p,q〈a
∗

piapjb
∗

qibqjΩ,Ω〉

Now by orthogonality, all of these commute and so
∑

i,j

∑

p,q〈a
∗

piapjb
∗

qibqjΩ,Ω〉 =
∑

p,q

∑

i,j〈apjbqjΩ, aqibqiΩ〉 =
∑

p,q ‖
∑

j apjbqjΩ‖
2 ≥ 0 �

We define on X⊗Y actions of M , Mop by a, b ∈ M by a·x⊗y ·b = ax⊗Jb∗Jy

Proposition 0.4. These actions are well-defined.

Definition. call the completion of X ⊗ Y the fusion of X and Y , X ⊠ Y .

Theorem 0.5. Let ρ1, ρ2 be endomorphisms of M . Then Xρ1 ⊠ Xρ2 ≃
Xρ2◦ρ1 .
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Proof. The operator
V : x⊗ y 7→ ρ2(x)yΩ

is a unitary. Remains to show that it’s an intertwiner:

V · a · x⊗ y · b

= V ρ1(a)x⊗ Jb∗Jy

= ρ2(ρ1(a)x)JB
∗JyΩ

= ρ2ρ1(a)ρ2(x)JB
∗JyΩ

= ρ2ρ1(a)Jb
∗Jρ2(x)yΩ

= ρ2ρ1(x)Jb
∗JV x⊗ y

�

Corollary 0.6. Xρ1 ⊠ (Xρ2 ⊠Xρ3) ≃ Xρ3ρ2ρ1 ≃ (Xρ1 ⊠Xρ2)⊠Xρ3


