CONNES FUSION

SPEAKER: YOH TANIMOTO
TYPIST: EMILY PETERS

Abstract

Notes from the "Conformal Field Theory and Operator Algebras workshop," August 2010, Oregon.

The plan is to relate Connes fusion and endomorphisms.
In this talk, M is always a type III factor. For our purposes, it suffices to have the following property:

Fact. Any representation of M on a separable Hilbert space, is implemented by a unitary operator. Another way of saying this is that any two representations are equivalent.

Definition. An (M, M) bimodule is a Hilbert space X with commuting actions of M and $M^{o p}$.

Definition. An endomorphism of M is a unital *-homomorphism of M into M.

Example. $L^{2}(M)$ is a trivial bimodule. For $x, y \in M$ and $\xi \in L^{2}(M)$, $x \cdot \xi \cdot y$.

Example. If ρ is an endomorphism of M, then it also acts on $L^{2}(M)$. We define $\rho(x) \cdot \xi \cdot y=\rho(x) J Y^{*} J \xi$. Call this bimodule X_{ρ}.

Proposition 0.1. Any bimodule is unitarily equivalent to some X_{ρ}.

Proof. From the first fact, as representation of $M^{o p}, X$ and $L^{2}(M)$ are equivalent. We may assume that $X=L^{2}(M)$ as $M^{o p}$-modules. The action of M commutes with $M^{o p}$. $\left(M^{o p}\right)^{\prime}=M$; the image of M is M.

Proposition 0.2. $X_{\rho_{1}} \simeq X_{\rho_{2}}$ iff there is a $u \in \mathcal{U}(M)$ such that $u \rho_{1}(x) u^{*}=$ $\rho_{2}(x)$.

[^0]Proof. in one direction, u commutes with $M^{o p}$. In the other, let u implement the equivalence. u must commute with $M^{o p}=M^{\prime}$, so $u \in M$.

	direct sum	subobject	
bimodule	$X \oplus Y$	invariant subspace	fusion
endomorphisms	$P_{1} \perp P_{2}, P_{1}+P_{2}=I$,	$P \in M,[P, \rho(x)]=0$,	composition
	$v_{I}: P_{i} \simeq I:$	$V: P \simeq I . V \rho(x) V^{*}$.	$\rho_{2} \circ \rho_{1}$.
	$V_{1} \rho_{1}(x) V_{1}^{*}+V_{2} \rho_{2}(x) V_{2}^{*}$		

Let X, Y be bimodules. $\mathcal{X}=\operatorname{Hom}\left(L^{2}(M)_{M}, X_{M}\right)$ and $\mathcal{Y}=\operatorname{Hom}\left({ }_{M} L^{2}(M),{ }_{M} Y\right)$.
We consider $\mathcal{X} \otimes \mathcal{Y}$ with an inner product, $\left\langle x_{1} \otimes y_{1}, x_{2} \otimes y_{2}\right\rangle=\left\langle x_{2}^{*} x_{1} y_{2}^{*} y_{1} \Omega, \Omega\right\rangle$ Here we use $x_{2}^{*} x_{1} \in M$ and $y_{2}^{*} y_{1} \in M^{o p}$. (this is because $x \in \operatorname{Hom}\left(L^{2}(M)_{M}, X_{M}\right)$ and $x^{*} \in \operatorname{Hom}\left(X_{M}, L^{2}(M)_{M}\right)$ gives us $x^{*} x \in \operatorname{Hom}\left(L^{2}(M)_{M}, L^{2}(M)_{M}\right)$ ie $x^{*} x \in M$.)

Lemma 0.3. The form thus defined on $\mathcal{X} \otimes \mathcal{Y}$ is an inner product

Proof. Show positive definiteness.
Let $z=\sum_{i} x_{i} \otimes y_{i}$; then $\langle z, z\rangle=\sum_{i, j}\left\langle x_{i}^{*} x_{j} y_{i}^{*} y_{j} \Omega, \Omega\right\rangle$
Now $x=\left(x_{i}^{*} x_{j}\right) \in M_{n}(M)$; rewrite it as

$$
x=\left(\begin{array}{c}
x_{1}^{*} \\
x_{2}^{*} \\
\vdots \\
x_{n}^{*}
\end{array}\right) \cdot\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right)
$$

We can write $x=a^{*} a$ where $a \in M_{n}(M)$. Similarly for $y, y=b^{*} b$.
So, $\langle z, z\rangle=\sum_{i, j}\left\langle x_{i}^{*} x_{j} y_{i}^{*} y_{j} \Omega, \Omega\right\rangle=\sum_{i, j} \sum_{p, q}\left\langle a_{p i}^{*} a_{p j} b_{q i}^{*} b_{q j} \Omega, \Omega\right\rangle$
Now by orthogonality, all of these commute and so $\sum_{i, j} \sum_{p, q}\left\langle a_{p i}^{*} a_{p j} b_{q i}^{*} b_{q j} \Omega, \Omega\right\rangle=$ $\sum_{p, q} \sum_{i, j}\left\langle a_{p j} b_{q j} \Omega, a_{q i} b_{q i} \Omega\right\rangle=\sum_{p, q}\left\|\sum_{j} a_{p j} b_{q j} \Omega\right\|^{2} \geq 0$

We define on $\mathcal{X} \otimes \mathcal{Y}$ actions of $M, M^{o p}$ by $a, b \in M$ by $a \cdot x \otimes y \cdot b=a x \otimes J b^{*} J y$
Proposition 0.4. These actions are well-defined.
Definition. call the completion of $\mathcal{X} \otimes \mathcal{Y}$ the fusion of X and $Y, X \boxtimes Y$.
Theorem 0.5. Let ρ_{1}, ρ_{2} be endomorphisms of M. Then $X_{\rho_{1}} \boxtimes X_{\rho_{2}} \simeq$ $X_{\rho_{2} \circ \rho_{1}}$.

Proof. The operator

$$
V: x \otimes y \mapsto \rho_{2}(x) y \Omega
$$

is a unitary. Remains to show that it's an intertwiner:

$$
\begin{array}{r}
V \cdot a \cdot x \otimes y \cdot b \\
=V \rho_{1}(a) x \otimes J b^{*} J y \\
=\rho_{2}\left(\rho_{1}(a) x\right) J B^{*} J y \Omega \\
=\rho_{2} \rho_{1}(a) \rho_{2}(x) J B^{*} J y \Omega \\
=\rho_{2} \rho_{1}(a) J b^{*} J \rho_{2}(x) y \Omega \\
=\rho_{2} \rho_{1}(x) J b^{*} J V x \otimes y
\end{array}
$$

Corollary 0.6. $X_{\rho_{1}} \boxtimes\left(X_{\rho_{2}} \boxtimes X_{\rho_{3}}\right) \simeq X_{\rho_{3} \rho_{2} \rho_{1}} \simeq\left(X_{\rho_{1}} \boxtimes X_{\rho_{2}}\right) \boxtimes X_{\rho_{3}}$

[^0]: Date: August 19, 2010.
 Available online at http://math.mit.edu/~eep/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!

