QUANTUM DIMENSION

SPEAKER: JOSIAH THORNTON TYPIST: BRENT PYM

ABSTRACT. Notes from the "Conformal Field Theory and Operator Algebras workshop," August 2010, Oregon.

Outline for the talk

- (1) An example
- (2) Semi-simple ribbon categories
- (3) Continuation of example
- (4) Definition of quantum dimension
- (5) Properties thereof
- (6) Computations for IPERs of LSU(2)

1. Basic example

Let $V = \mathbb{C}^2$ and choose a basis $\{e_2, e_2\}$ with dual basis $\{\epsilon_1, \epsilon_2\}$ for V^* . We have an evaluation map

$$e: V \otimes V^* \to \mathbb{C}$$

defined by eating a vector with a linear functional. There is also an embedding

$$i: \mathbb{C} \to V \otimes V^*$$

defined by

$$i(1) = e_1 \otimes \epsilon_2 + e_2 \otimes \epsilon_2.$$

The composition

$$e \circ i : \mathbb{C} \to V \otimes V^* \to \mathbb{C}$$

yields

$$e(e_1 \otimes \epsilon_1 + e_1 \otimes \epsilon_2) = 2.$$

Date: August 20, 2010.

Available online at http://math.mit.edu/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!

2. Semi-simple ribbon categories

Let \mathcal{C} be a \mathbb{C} -linear abelian category equipped with the following structure:

- $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$, a bilinear functor
- $\alpha_{U,V,W} : (U \otimes V) \otimes W \xrightarrow{\sim} U \otimes (V \otimes W)$, a functorial isomorphism for all $U, V, W \in \mathcal{C}$
- $I \in \mathcal{C}$ such that $End(I) = \mathbb{C}$, together with functorial isomorphisms

$$\lambda_V: I \otimes V \xrightarrow{\sim} V$$

and

$$\rho_V: V \otimes I \to V$$

for all $V \in \mathcal{C}$

Such a structure is called a *monoidal structure*.

Example. $Vec(\mathbb{C})$, together with the tensor product \otimes .

Example. Rep(SU(N)) with tensor product $\mathcal{H}_1 \otimes \mathcal{H}_2$ of the underlying Hilbert spaces $\mathcal{H}_1, \mathcal{H}_2 \in Rep(SU(N))$ and the action

$$g(x\otimes y) = g(x)\otimes g(y)$$

and $x\in \mathcal{H}_1, y\in \mathcal{H}_2.$

Definition. A *braiding* is given by isomorphisms

 $\sigma_{VW}: V \otimes W \xrightarrow{\sim} W \otimes V,$

which are functorial in $V, W \in C$, and satisfy some commutative diagrams. A category with a monoidal structure and a braiding is called a *braided* monoidal category.

Example. For the categories $Vec(\mathbb{C})$ and Rep(SU(N)), the isomorphisms

$$\tau_{VW}: V \times W \to W \times V$$

given by

$$\tau(v,w) = (w,v)$$

give a braiding.

for $g \in SU(N)$

Rigidity is given by homomorphisms

$$e_V: V^* \otimes V \to I$$

and

$$i_V: I \to V \otimes V^*.$$

where V is the right dual of V. These maps must make the following diagrams commute:

 \Box .

QUANTUM DIMENSION

Example. For $Vec(\mathbb{C})$, we have $V^* = Hom(V, \mathbb{C})$ and the maps e_V and i_V as before.

Example. For Rep(G), the representation on the dual of \mathcal{H} is given by continuous linear functionals $\mathcal{H}^* = C(\mathcal{H}, \mathbb{C})$ with the representation

$$(gf)(v) = f(g^{-1}v)$$

for $f \in \mathcal{H}^*$, $g \in G$ and $v \in \mathcal{H}$.

Suppose that we have a map $f: U \to V$. We can construct a dual map f^* by the composition

$$V^* \xrightarrow{\mathbf{1} \otimes i_U} V^* \otimes U \otimes U^* \xrightarrow{\mathbf{1} \otimes f \otimes \mathbf{1}} V^* \otimes V \otimes U^* \xrightarrow{e_V \otimes \mathbf{1}} U^*$$

Definition. A *ribbon category* is a rigid braided tensor category with a functorial isomorphism $\delta_V: V \xrightarrow{\sim} V^{**}$ such that

$$\delta_{V\otimes W} = \delta_V \otimes \delta_W$$
$$\delta_I = \mathbf{1}_I$$
$$\delta_{V^*} = (\delta_V^*)^{-1}$$

3. QUANTUM DIMENSION

Let \mathcal{C} be a semi-simple ribbon category.

Definition. Let $V \in \mathcal{C}$ and $f \in End(V)$. Define the *trace of* f to be the composition

$$I \to V \otimes V^* \xrightarrow{f \otimes \mathbf{1}} V \otimes V^* \to V^{**} \otimes V^* \xrightarrow{e_{V^*}} I$$

One important property of the trace is

$$tr(f \otimes g) = tr(f)tr(g),$$

a fact which needs the ribbon structure.

Definition. The quantum dimension of $V \in \mathcal{C}$ is defined to by $tr(\mathbf{1}_V)$.

If there are finitely many simple objects, the quantum dimension is a real number. For LSU(N), the quantum dimension is, in fact, positive.

4. CALCULATIONS

Let

$$N_{fg}^h = \dim \left(Hom(V_h, V_f \otimes V_g) \right)$$

Theorem 4.1 (Wassermann). The Connes fusion satisfies

 $\mathcal{H}_f \boxtimes \mathcal{H}_g = \bigoplus N_{fg}^h \operatorname{sgn}(\sigma_h) \mathcal{H}_{h'}$

where

$$h' = \sigma(h+\delta) - \delta$$

is a permutation.

Corollary 4.2. For G = SU(2), we have

$$\mathcal{H}_l \boxtimes \mathcal{H}_l = \mathcal{H}_0$$

Theorem 4.3. For the permutation signature f, we have

$$\mathcal{H}_{\Box} oxtimes \mathcal{H}_{f} = igoplus_{g=f+\Box} \mathcal{H}_{g}$$

Corollary 4.4. For G = SU(2) and $1 \le \lambda \le l - 1$,

$$\mathcal{H} \boxtimes \mathcal{H}_{\lambda} = \mathcal{H}_{\lambda-1} \oplus \mathcal{H}_{\lambda+1}$$

Fix a level $l \in \mathbb{Z}$, consider

$$\mathcal{H}_0,\ldots,\mathcal{H}_l,$$

and define

$$d_i = \dim \mathcal{H}_i$$

and

 $d_l = 1.$

Proposition 5.1. For $0 \le i \le l$, we have

 $d_i = d_{l-i},$

so that

$$d_1 d_i = d_{i-1} + d_{i+1}$$

and

$$d_1 d_{l-i} = d_{l-i-1} + d_{l-i+1},$$

 $and\ hence$

$$d_{i-1} = d_{l-i+1}$$

for $1 \le i \le l - 1$.

We can use this proposition to calculate the quantum dimensions, as in the following picture:

