QUANTUM DIMENSION

SPEAKER: JOSIAH THORNTON
TYPIST: BRENT PYM

Abstract. Notes from the "Conformal Field Theory and Operator Al-

 gebras workshop," August 2010, Oregon.Outline for the talk
(1) An example
(2) Semi-simple ribbon categories
(3) Continuation of example
(4) Definition of quantum dimension
(5) Properties thereof
(6) Computations for IPERs of $\operatorname{LSU}(2)$

1. Basic example

Let $V=\mathbb{C}^{2}$ and choose a basis $\left\{e_{2}, e_{2}\right\}$ with dual basis $\left\{\epsilon_{1}, \epsilon_{2}\right\}$ for V^{*}. We have an evaluation map

$$
e: V \otimes V^{*} \rightarrow \mathbb{C}
$$

defined by eating a vector with a linear functional. There is also an embedding

$$
i: \mathbb{C} \rightarrow V \otimes V^{*}
$$

defined by

$$
i(1)=e_{1} \otimes \epsilon_{2}+e_{2} \otimes \epsilon_{2} .
$$

The composition

$$
e \circ i: \mathbb{C} \rightarrow V \otimes V^{*} \rightarrow \mathbb{C}
$$

yields

$$
e\left(e_{1} \otimes \epsilon_{1}+e_{1} \otimes \epsilon_{2}\right)=2 .
$$

Date: August 20, 2010.
Available online at http://math.mit.edu/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!

2. Semi-simple ribbon categories

Let \mathcal{C} be a \mathbb{C}-linear abelian category equipped with the following structure:

- $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$, a bilinear functor
- $\alpha_{U, V, W}:(U \otimes V) \otimes W \xrightarrow{\sim} U \otimes(V \otimes W)$, a functorial isomorphism for all $U, V, W \in \mathcal{C}$
- $I \in \mathcal{C}$ such that $\operatorname{End}(I)=\mathbb{C}$, together with functorial isomorphisms

$$
\lambda_{V}: I \otimes V \xrightarrow{\sim} V
$$

and

$$
\rho_{V}: V \otimes I \rightarrow V
$$

for all $V \in \mathcal{C}$

Such a structure is called a monoidal structure.
Example. $\operatorname{Vec}(\mathbb{C})$, together with the tensor product \otimes.
Example. $\operatorname{Rep}(S U(N))$ with tensor product $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ of the underlying Hilbert spaces $\mathcal{H}_{1}, \mathcal{H}_{2} \in \operatorname{Rep}(S U(N))$ and the action

$$
g(x \otimes y)=g(x) \otimes g(y)
$$

for $g \in S U(N)$ and $x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2}$.
Definition. A braiding is given by isomorphisms

$$
\sigma_{V W}: V \otimes W \xrightarrow{\sim} W \otimes V,
$$

which are functorial in $V, W \in \mathcal{C}$, and satisfy some commutative diagrams. A category with a monoidal structure and a braiding is called a braided monoidal category.

Example. For the categories $\operatorname{Vec}(\mathbb{C})$ and $\operatorname{Rep}(S U(N))$, the isomorphisms

$$
\tau_{V W}: V \times W \rightarrow W \times V
$$

given by

$$
\tau(v, w)=(w, v)
$$

give a braiding.

Rigidity is given by homomorphisms

$$
e_{V}: V^{*} \otimes V \rightarrow I
$$

and

$$
i_{V}: I \rightarrow V \otimes V^{*}
$$

where V is the right dual of V. These maps must make the following diagrams commute:

Example. For $\operatorname{Vec}(\mathbb{C})$, we have $V^{*}=\operatorname{Hom}(V, \mathbb{C})$ and the maps e_{V} and i_{V} as before.

Example. For $\operatorname{Rep}(G)$, the representation on the dual of \mathcal{H} is given by continuous linear functionals $\mathcal{H}^{*}=C(\mathcal{H}, \mathbb{C})$ with the representation

$$
(g f)(v)=f\left(g^{-1} v\right)
$$

for $f \in \mathcal{H}^{*}, g \in G$ and $v \in \mathcal{H}$.

Suppose that we have a map $f: U \rightarrow V$. We can construct a dual map $f *$ by the composition

$$
V^{*} \xrightarrow{1 \otimes i} V^{*} \otimes U \otimes U^{*} \xrightarrow{1 \otimes f \otimes 1} V^{*} \otimes V \otimes U^{*} \xrightarrow{e_{V} \otimes 1} U^{*}
$$

Definition. A ribbon category is a rigid braided tensor category with a functorial isomorphism $\delta_{V}: V \xrightarrow{\sim} V^{* *}$ such that

$$
\begin{aligned}
\delta_{V \otimes W} & =\delta_{V} \otimes \delta_{W} \\
\delta_{I} & =\mathbf{1}_{I} \\
\delta_{V^{*}} & =\left(\delta_{V}^{*}\right)^{-1}
\end{aligned}
$$

3. Quantum dimension

Let \mathcal{C} be a semi-simple ribbon category.
Definition. Let $V \in \mathcal{C}$ and $f \in \operatorname{End}(V)$. Define the trace of f to be the composition

$$
I \rightarrow V \otimes V^{*} \xrightarrow{f \otimes 1} V \otimes V^{*} \rightarrow V^{* *} \otimes V^{*} \xrightarrow{e_{V^{*}}} I
$$

One important property of the trace is

$$
\operatorname{tr}(f \otimes g)=\operatorname{tr}(f) \operatorname{tr}(g)
$$

a fact which needs the ribbon structure.
Definition. The quantum dimension of $V \in \mathcal{C}$ is defined to by $\operatorname{tr}\left(\mathbf{1}_{V}\right)$.

If there are finitely many simple objects, the quantum dimension is a real number. For $\operatorname{LSU}(N)$, the quantum dimension is, in fact, positive.

4. Calculations

Let

$$
N_{f g}^{h}=\operatorname{dim}\left(H o m\left(V_{h}, V_{f} \otimes V_{g}\right)\right)
$$

Theorem 4.1 (Wassermann). The Connes fusion satisfies

$$
\mathcal{H}_{f} \boxtimes \mathcal{H}_{g}=\bigoplus N_{f g}^{h} \operatorname{sgn}\left(\sigma_{h}\right) \mathcal{H}_{h^{\prime}}
$$

where

$$
h^{\prime}=\sigma(h+\delta)-\delta
$$

is a permutation.
Corollary 4.2. For $G=S U(2)$, we have

$$
\mathcal{H}_{l} \boxtimes \mathcal{H}_{l}=\mathcal{H}_{0}
$$

Theorem 4.3. For the permutation signature f, we have

$$
\mathcal{H}_{\square} \boxtimes \mathcal{H}_{f}=\bigoplus_{g=f+\square} \mathcal{H}_{g}
$$

Corollary 4.4. For $G=S U(2)$ and $1 \leq \lambda \leq l-1$,

$$
\mathcal{H} \boxtimes \mathcal{H}_{\lambda}=\mathcal{H}_{\lambda-1} \oplus \mathcal{H}_{\lambda+1}
$$

5. IPERs of $L S U(2)$

Fix a level $l \in \mathbb{Z}$, consider

$$
\mathcal{H}_{0}, \ldots, \mathcal{H}_{l}
$$

and define

$$
d_{i}=\operatorname{dim} \mathcal{H}_{i}
$$

and

$$
d_{l}=1 .
$$

Proposition 5.1. For $0 \leq i \leq l$, we have

$$
d_{i}=d_{l-i}
$$

so that

$$
d_{1} d_{i}=d_{i-1}+d_{i+1}
$$

and

$$
d_{1} d_{l-i}=d_{l-i-1}+d_{l-i+1},
$$

and hence

$$
d_{i-1}=d_{l-i+1}
$$

for $1 \leq i \leq l-1$.

We can use this proposition to calculate the quantum dimensions, as in the following picture:

