TOMITA-TAKESAKI THEORY AND THE KMS CONDITION

SPEAKER: MICHAEL HARTGLASS (UC BERKELEY)
TYPIST: JAMES TENER

Abstract

Notes from the "Conformal Field Theory and Operator Algebras workshop," August 2010, Oregon.

Fixing notation: ϕ is a faithful, normal state on a von Neumann algebra M. What does that mean?

A state is a continuous linear functional $\phi: M \rightarrow \mathbb{C}$ such that $\phi(\mathbf{1})=1=$ $\|\phi\|$. Equivalently, $\phi\left(x^{*} x\right) \geq 0$ for all $x \in M$.

Faithful means that $\phi\left(x^{*} x\right)=0$ if and only if $x=0$.
Normal means that the state is continuous when M is given the ultraweak topology. That is, the topology wherre convergence is givenn by $x_{\lambda} \rightarrow x$ if

$$
\sum_{i=1}^{\infty}\left\langle x_{\lambda} \xi_{i}, \eta_{i}\right\rangle \rightarrow \sum_{i=1}^{\infty}\left\langle x \xi_{i}, \eta_{i}\right\rangle
$$

whenever

$$
\sum\left\|\xi_{i}\right\|^{2}+\left\|\eta_{i}\right\|^{2}<\infty
$$

Equivalently, whenever x_{λ} is an increasing net in M that converges to x, we have $\phi\left(x_{\lambda}\right) \rightarrow \phi(x)$.

Put inner product on M by $\langle x, y\rangle=\phi\left(y^{*} x\right)$. This gives us a new norm, $\|\cdot\|_{2}$ on M. Complete M with respect to this norm to get the Hilbert space $L^{2}(M)$. Let Ω denote the image of $\mathbf{1}_{M}$ in $L^{2}(M)$. This is called the "vacuum vector."

[^0]We let M act on $L^{2}(M)$, densely defined by left multiplication. For this action, Ω is a cyclic, separating vector for this action. Cyclic means $M \Omega$ is dense in $L^{2}(M)$, and separating means $x \Omega=0 \Longrightarrow x=0$ for all $x \in M$.

We now look at the map $S_{0}: M \Omega \rightarrow M \Omega$ given by $S_{0}(x \Omega)=x^{*} \Omega$. In generral, this map is unbounded, and so cannot be extended to $L^{2}(M)$. However, it is as nicely behaved as an unnbounded operator can be. We will be especially interested in its polar decomposition.

Can also define $F_{0}: M^{\prime} \Omega \rightarrow M^{\prime} \Omega$ by $F_{0}\left(x^{\prime} \Omega\right)=\left(x^{\prime}\right)^{*} \Omega$ for $x^{\prime} \in M^{\prime}$. Recall: M^{\prime} is the commutant of M, as it acts on $L^{2}(M)$. i.e. $M^{\prime}=\{x \in B(H)$: $x y=y x$ for all $y \in M\}$.

Notation: if A and B are unbounded operators, we write $A \subset B$ if $\operatorname{dom} A \subset$ $\operatorname{dom} B$ and B agrees with A when restrict to $\operatorname{dom} A$.

If A is unbounded, the domain of A^{*} is $\{\eta:\langle A \zeta, \eta\rangle$ is a bounded function of $\zeta\}$. Then we have $\left\langle\zeta, A^{*} \eta\right\rangle=\langle A \zeta, \eta\rangle$ where the expression is defined.

Fact. $S_{0} \subset F_{0}^{*}$ and $F_{0} \subset S_{0}^{*}$.

Proof of fact. Let $a \in M, a^{\prime} \in M^{\prime}$. Then $\left\langle S_{0}(a \Omega), a^{\prime} \Omega\right\rangle=\left\langle a^{*} \Omega, a^{\prime} \Omega\right\rangle=$ $\left\langle\left(a^{\prime}\right)^{*} \Omega, a \Omega\right\rangle$. This is clearly a bounded functino of $a \Omega$, which implies $\operatorname{dom} S_{0} \subset$ $\operatorname{dom} F_{0}^{*}$. The other inclusion is proved similarly.

Since Ω is cyclic and separating for M, it is also cyclic and separating for M^{\prime}, so S_{0} and F_{0} are both densely defined. By a standard result in operator theory, both S_{0} and F_{0} are closable. That is, when we take the closure of the graph of S_{0} or F_{0}, it remains the graph of a linear operator. These new operators have the continuity property that if $x_{n} \rightarrow x$ and $S_{0}\left(x_{n}\right)$ converges, then $S_{0}\left(x_{n}\right) \rightarrow S_{0}(x)$.

Theorem 0.1. Let S and F be the closures of S_{0} and F_{0}, respectively. Then $S=F^{*}$ and $F=S^{*}$.

Since S and F are losed and densely defined, so we have a polar decomposition $S=J \Delta^{\frac{1}{2}}$. Recall that S is conjugate linear, so J is conjugate linear. In fact, J is an isometry. In general, Δ will be unbounded.
Claim. $J \Delta^{\frac{1}{2}} J=\Delta^{-\frac{1}{2}}$

Proof. $S=S^{-1}$, so $S^{-1}=\left(J \Delta^{\frac{1}{2}}\right)^{-1}=\Delta^{-\frac{1}{2}} J$. Rearranging proves the claim.

We now want to show $J M J=M^{\prime}$. We begin with some preliminary results.
Lemma 0.2. With ϕ as before, and $\psi \in M_{*}$ such that $\left|\psi\left(y^{*} x\right)\right|^{2} \leq \phi\left(x^{*} x\right) \phi\left(y^{*} y\right)$. Then $S=F^{*}$ and $F=S^{*}$ and given $\lambda>0$ then there exists $a \in M$ with $\|a\|<\frac{1}{2}$ such that $\psi(x)=\lambda \phi(a x)+\lambda^{-1} \phi(x a)$.

This is a sort of non-commutative Radon-Nikodym derivative.
Lemma 0.3. Let λ be as before. Given $a^{\prime} \in M^{\prime}$, theere is an $a \in M$ such that $a \Omega \in \operatorname{dom}(F)$ and $a^{\prime} \Omega=\left(\lambda S+\lambda^{-1} F\right) a \Omega$.

Sketch of proof. From basic facts about the GNS construction, $\phi(x)=\langle x \Omega, \Omega\rangle$. We then have

$$
\left\langle x \Omega, a^{\prime} \Omega\right\rangle=\lambda\langle a x \Omega, \Omega\rangle+\lambda^{-1}\langle x a \Omega, \Omega\rangle
$$

assuming $\|a\|<1$. Once we check that everything is in the right domain, we get that

$$
\lambda\langle a x \Omega, \Omega\rangle+\lambda^{-1}\langle x a \Omega, \Omega\rangle=\lambda\langle x \Omega, S a \Omega\rangle+\lambda^{-1}\langle a \Omega, S(x \Omega)\rangle .
$$

The last expression is $\lambda^{-1}\langle x \Omega, F(a \Omega)\rangle$.
Lemma 0.4. Let λ, a and a^{\prime} be as before. Then if $x i, \eta \in \operatorname{dom}(F) \cap \operatorname{dom}(S)$, we have $\lambda\langle S a S \xi, \eta\rangle+\lambda^{-1}\langle F a F \xi, \eta\rangle=\left\langle a^{\prime} \xi, \eta\right\rangle$.

Proof.

$$
F(0)=\int_{-\infty}^{\infty} \frac{F\left(i t+\frac{1}{2}\right)+F\left(i t-\frac{1}{2}\right)}{2 \cosh (\pi t)} d t
$$

provided f is bounded, holomorphic on the strip $-\frac{1}{2} \leq \operatorname{Re}(z) \leq \frac{1}{2}$.
Proposition 0.5. Let λ, a and a^{\prime} be as before. Then

$$
a=\int_{-\infty}^{\infty} \lambda^{2 i t} \frac{\Delta^{i t} J a^{\prime} J \Delta^{-i t}}{\cosh (\pi t)} d t
$$

Proof idea. $\lambda^{2 i t}$ etc. extend holomorphically, apply prev lemma
Theorem 0.6. $J M J=M^{\prime}$ and $\Delta^{i t} M \Delta^{-i t} M$ for all $t \in \mathbb{R}$.

Proof idea. Take a unitary $u \in M^{\prime}$. Then $a=u^{*} a u$. Pull u under the integral given above, and note that the Fourier transforms of $u^{*} \Delta^{i t} J a^{\prime} J \Delta^{-i t} u$ and $\Delta^{i t} J a^{\prime} J \Delta^{-i t}$ are equal, so the operators are equal. Plugging in $t=0$ impliess $J M^{\prime} J \subseteq M$. By symmetry $J M J \subseteq M^{\prime}$, which proves the theorem. We used the fact that an operator commuting with every unitary in M^{\prime} must commute with everything in M^{\prime}, and is therefore in M (by the double commutant theorem).

Example. $M=M_{2}(\mathbb{C})$, and $\phi(x)=\operatorname{tr}(a x)$ where $a=\left[\begin{array}{cc}\mu_{1} & 0 \\ 0 & \mu_{2}\end{array}\right]$ for $\mu_{i}>0$ and $\mu_{1}+\mu_{2}=1$. In this example, $J\left(e_{i j}\right)=\sqrt{\frac{\mu_{i}}{\mu_{j}}} e_{j i}$ (extended by conjugate linearity) and $\Delta\left(e_{i j}\right)=\frac{\mu_{i}}{\mu_{j}} e_{i j}$ (extended linearly).
Example. Here we show an example where S is unbounded. Consider

$$
M=\bigotimes_{i=1}^{\infty} M_{2}(\mathbb{C})
$$

Our state is $\phi=\bigotimes_{i=1}^{\infty} \phi_{i}$, where $\phi_{i}(x)=\operatorname{tr}\left(a_{i} x\right)$ as above with $\mu_{1, i} \rightarrow 0$ as $i \rightarrow \infty$ (and thus $\mu_{2, i} \rightarrow 1$).

Back to the $M_{2}(\mathbb{C})$ example. Fix $x, y \in M_{2}(\mathbb{C})$. Define $f(z)$ on the strip $0 \leq \operatorname{Im} z \leq 1$ by $f(z)=\left\langle\Delta^{-i z} y \Omega, x \Omega\right\rangle$. Then, for $t \in \mathbb{R}, f(t)=\phi\left(\sigma_{t}^{\phi}(x) y\right)$ and $f(t+i)=\phi\left(y \sigma_{t}^{\phi}(x)\right)$. Here, $\sigma_{t}^{\phi}(x):=\Delta^{i t} x \Delta-i t$.

Theorem 0.7 (KMS condition). Define $f(z)=\left\langle\Delta^{-i z} x \Omega, y \Omega\right\rangle$ for $x, y \in M$ fixed. Then $f(t)=\phi\left(\sigma_{t}^{\phi}(x) y\right)$ and $f(t+i)=\phi\left(y \sigma_{t}^{\phi}(x)\right)$. If α_{t} is a strongly continuous 1 parameter group of automorphisms of M satisfying $\phi \circ \alpha_{t}=\phi$ and there exists a function G, holomorphic in the strip, such that $G(t+i)=$ $\phi\left(y \sigma_{t}^{\phi}(x)\right)$ and $G(t)=\phi\left(\sigma_{t}^{\phi}(x) y\right)$, then $\alpha_{t}=\sigma_{t}^{\phi}$ for all $t \in \mathbb{R}$.

Corollary 0.8. The following are equivalent:
(1) $\phi(a x)=\phi(x a)$ for all $x \in M$
(2) $\sigma_{t}^{\phi}(a)=a$ for all $t \in \mathbb{R}$.

Proof. (1) \Longrightarrow (2). If $x \in M$, then

$$
\left\langle x^{*} \Omega, a \Omega\right\rangle=\langle\Omega, x a \Omega\rangle=\langle\Omega, a x \Omega\rangle=\left\langle a^{*} \Omega, x \Omega\right\rangle=\langle S(a \Omega), x \Omega\rangle .
$$

This implies $a \Omega \in \operatorname{dom} S^{*}$ and $S^{*}(a \Omega)=a^{*} \Omega$. Sine $S^{*}=\Delta^{\frac{1}{2}} J, a^{*} \Omega$ has to be fixed by Δ. Hence $a \Omega$ is fixed by Δ and thus $\Delta^{i t}$.
$(2) \Longrightarrow(1)$. We have $\phi\left(\sigma_{t}^{\phi}(x) a\right)=\phi\left(\sigma_{t}^{\phi}(x a)\right)=\phi(x a)$. This implies $f(z)$ is constant along the real axis, which implies that it is constant everywhere in the strip $0 \leq \operatorname{Im}(z) \leq 1$. Plugging in $t=0$ we get $\phi(x a)=\phi(a x)$.

[^0]: Date: August 17, 2010.
 Available online at http://math.mit.edu/~eep/CFTworkshop. Please email eep@math.mit.edu with corrections and improvements!

