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Suppose N ⊂ M is a subfactor, ie a unital inclusion of type II1
factors.

Definition

The index of N ⊂ M is [M : N] := dimN L2(M).

Example

If R is the hyperfinite II1 factor, and G is a finite group which acts
outerly on R, then R ⊂ R o G is a subfactor of index |G |.

If H ≤ G , then R o H ⊂ R o G is a subfactor of index [G : H].

Theorem (Jones)

The possible indices for a subfactor are

{4 cos(
π

n
)2|n ≥ 3} ∪ [4,∞].
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Let X =NL2MM and X =ML2MN , and ⊗ = ⊗N or ⊗M as needed.

Definition

The standard invariant of N ⊂ M is the (planar) algebra of
bimodules generated by X :

X , X ⊗ X , X ⊗ X ⊗ X , X ⊗ X ⊗ X ⊗ X , . . .

X , X ⊗ X , X ⊗ X ⊗ X , X ⊗ X ⊗ X ⊗ X , . . .

Definition

The principal graph of N ⊂ M has vertices for (isomorphism
classes of) irreducible N-N and N-M bimodules, and an edge from

NYN to NZM if Z ⊂ Y ⊗ X (iff Y ⊂ Z ⊗ X ).

Ditto for the dual principal graph, with M-M and M-N bimodules.

The graph norm of the principal graph of N ⊂ M is
√

[M : N].
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Example: R o H ⊂ R o G

Again, let G be a finite group with subgroup H, and act outerly on
R. Consider N = R o H ⊂ R o G = M.
The irreducible M-M bimodules are of the form R ⊗ V where V is
an irreducible G representation. The irreducible M-N bimodules
are of the form R ⊗W where W is an H irrep.
The dual principal graph of N ⊂ M is the induction-restriction
graph for irreps of H and G .

Example (S3 ≤ S4)

trivial standard V sign⊗standard sign

trivial standard sign

(The principal graph is an induction-restriction graph too, for H
and various subgroups of H.)
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Planar algebras

Definition

A shaded planar diagram has

a finite number of inner boundary circles

an outer boundary circle

non-intersecting strings

a marked point ? on each boundary circle

?

?

? ?
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We can compose planar diagrams, by insertion of one into another
(if the number of strings matches up):

2

1

?

?

3

? ?

◦2

?
?

=
?

?

? ?

Definition

The shaded planar operad consists of all planar diagrams (up to
isomorphism) with the operation of composition.
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Definition

A planar algebra is a family of vector spaces Vk,±, k = 0, 1, 2, . . .
which are acted on by the shaded planar operad.

V2,− × V1,+ × V1,+ V3,+

V2,− × V2,+ × V1,+

?

?

? ?

2

1

?

?

3

? ?
?

?
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Example: Temperley-Lieb

TLn,±(δ) is the span (over C) of non-crossing pairings of 2n points
arranged around a circle, with formal addition.

TL3 = SpanC{
?

,
?

,
?

,
?

,
?
}.

Planar tangles act on TL by inserting diagrams into empty disks,
smoothing strings, and throwing out closed loops at a cost of ·δ.

?
? (

?
)

=

?

= δ2

?
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Subfactor planar algebras

The standard invariant of a (finite index, extremal) subfactor is a
planar algebra P with some extra structure:

P0,± are one-dimensional

All Pk,± are finite-dimensional

Sphericality: X = X

Inner product: each Pk,± has an adjoint ∗ such that the
bilinear form 〈x , y〉 := Tr(yx∗) is positive definite

From these properties, it follows that closed circles count for a
multiplicative constant δ.

Definition

A planar algebra with these properties is a subfactor planar algebra.
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Theorem (Jones)

The standard invariant of a subfactor is a subfactor planar algebra.

Theorem (Popa ’95, Guillonet-Jones-Shlyaktenko ’09)

One can construct a subfactor N ⊂ M from any subfactor planar
algebra P, in such a way that the standard invariant of N ⊂ M is
P again.

Example

If δ > 2, TL(δ) is a subfactor planar algebra. If δ = 2 cos(π/n), a
quotient of TL(δ) is a subfactor planar algebra.
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Theorem (Jones, Ocneanu, Kawahigashi, Izumi, Bion-Nadal)

The principal graph of a subfactor of index less than 4 is one of

An = ∗ · · ·
n vertices

, n ≥ 2 index 4 cos2( π
n+1 )

D2n = ∗ · · ·

2n vertices

, n ≥ 2 index 4 cos2( π
4n−2 )

E6 = ∗ index 4 cos2( π12 ) ≈ 3.73

E8 = ∗ index 4 cos2( π30 ) ≈ 3.96
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Theorem (Popa)

The principal graphs of a subfactor of index 4 are extended Dynkin
diagram:

A
(1)
n = ∗ · · ·

· · ·
n + 1 vertices

, n ≥ 1, D
(1)
n = ∗ · · ·

n + 1 vertices

, n ≥ 3,

E
(1)
6 = ∗ , E

(1)
7 = ∗ ,

E
(1)
8 = ∗ , A∞ = ∗ · · · ,

A
(1)
∞ = ∗ · · ·

· · ·
, D∞ = ∗ · · ·

There are multiple subfactors for some of these principal graphs

(eg, n − 2 non-isomorphic hyperfinite subfactors for D
(1)
n ).
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In 1993 Haagerup classified possible principal graphs for
subfactors with index between 4 and 3 +

√
3 ≈ 4.73:

, , , . . .,

(≈ 4.30, 4.37, 4.38, . . .)

, (≈ 4.56)

, , . . . (≈ 4.62, 4.66, . . .).

Haagerup and Asaeda & Haagerup (1999) constructed two of
these possibilities.

Bisch (1998) and Asaeda & Yasuda (2007) ruled out infinite
families.

In 2009 we (Bigelow-Morrison-Peters-Snyder) constructed the
last missing case. arXiv:0909.4099
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The Extended Haagerup planar algebra

[Bigelow, Morrison, Peters, Snyder] The extended Haagerup planar
algebra is the positive definite planar algebra generated by a single

S ∈ V8,+, subject to the relations = δ ≈ 4.377, and

S?

?

···
= − S

?

?

···
, S?? ···

= S??
···

= · · · = 0 ,

8

8

8

S

S

?

?

=

8

8

f (8) ,
15

S

?

18

f (18) = i

√
[8][10]

[9]

9 9

7
S

?

S

?

18

f (18) ,

16

S?

20

f (20) = [2][20]
[9][10]

9 2 9

7 7
S

?

S

?

S

?

20

f (20)

The extended Haagerup planar algebra is a subfactor planar algebra
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The Extended Haagerup planar algebra redux

[Bigelow, Morrison, Peters, Snyder] The extended Haagerup planar
algebra is the positive definite planar algebra generated by a single

S ∈ V8,+, subject to the relations = δ ≈ 4.377, and

S?

?

···
= − S

?

?

···
, S?? ···

= S??
···

= · · · = 0 ,

8

8

8

S

S

?

?

∈ TL8 , 15

S

? = α 9 9

7
S

?

S

?

,

16

S?

= β n + 1 2 n + 1

7 7
S

?

S

?

S

?

.

The extended Haagerup planar algebra is a subfactor planar algebra
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Let V be the extended Haagerup planar algebra. How do we know
V 6= {0}? How do we know dim(V0,±) = 1?

Theorem (Jones-Penneys ’10, Morrison-Walker ’10)

A planar algebra P with principal graph Γ is contained in the graph
planar algebra GPA(Γ).

We show that V 6= {0} by finding an element S , satisfying the

right relations, in the graph planar algebra of .

Having dim(V0,±) = 1 means we can evaluate any closed diagram
as a multiple of the empty diagram. We give an evaluation
algorithm, which treats each copy of S as a ‘jellyfish’ and uses the
one-strand and two-strand substitute braiding relations to let each
S ‘swim’ to the top of the diagram.
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Begin with arbitrary planar network of Ss.

Now float each generator to the surface, using the relation.
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The diagram now looks like a polygon with some diagonals,
labelled by the numbers of strands connecting generators.

=

Each such polygon has a corner, and the generator there is
connected to one of its neighbours by at least 8 edges.

Use S2 ∈ TL to reduce the number of generators, and
recursively evaluate the entire diagram.
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Extending the classification:

Why did Haagerup stop at 3 +
√

3?

Why try to extend it?
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We work with principal graph pairs, meaning both principal and
dual principal graphs, and information on which bimodules are dual
to each other.

Example (The Haagerup subfactor’s principal graph pair)(
,

)
The pair must satisfy an associativity test:

(X ⊗ Y )⊗ X ∼= X ⊗ (Y ⊗ X )

We can efficiently enumerate such pairs with index below some
number L up to a given rank or depth, obtaining a collection of
allowed vines and weeds.
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Definition

A vine represents an infinite family of principal graphs, obtained by
translating the graph.

Example

=⇒

Definition

A weed represents an infinite family, obtained by translating and/or
extending arbitrarily on the right.

Example

=⇒
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The trivial weed
(

,
)

represents all possible principal
graphs (of irreducible subfactors).

We can always convert a weed into a vine, at the expense of
finding all possible depth 1 extensions of the weed (which stay
below the index limit, and satisfying the associativity condition)
and adding these as new weeds.

The is a finite problem, since high valence implies large graph
norm, and graph norm increases under inclusions.

If the weeds run out, we go home happy (for example, Haagerup’s
classification up to 3 +

√
3). Realistically, we stop with some

surviving weeds, and have to rule these out ‘by hand‘.
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Weeds and vines for index less than 5

Theorem (Morrison-Snyder, part I, arXiv:1007.1730)

Every (finite depth) II1 subfactor with index less than 5 sits inside
one of 54 families of vines (see below), or 5 families of weeds:

C =
(

,
)
,

F =
(

,
)
,

B =
(

,
)
,

Q =
(

,
)
,

Q′ =
(

,
)
.
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Definition

The supertransitivity of a graph of an irreducible subfactor is the
number of edges between its initial point and the first branch point.

These weeds and vines are all supertransitivity three and higher.
Supertransitivity one has to be dealt with separately.

Theorem (Morrison-Snyder, part I, arXiv:1007.1730)

There are no subfactors with index in (4, 5) with supertransitivity
one.

Careful attention to the dimensions of the objects in the possible
supertransitive-one graphs demonstrates this theorem.
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Theorem (Morrison-Penneys-P-Snyder, part II, arXiv:1007.2240)

There are no subfactors in the family

C =
(

,
)

.

This is proved using the ‘quadratic tangles’ test from [Jones, ’10]:
For some graphs, one can deduce structure constants for a
subfactor planar algebra from its principal graph:

r − 2 + r−1 =
ω + 2 + ω−1

[m][m + 2]
,

where r is a ratio of traces, ω a root of unity, and m the depth of
the branch point.
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Theorem (Morrison-Penneys-P-Snyder, part II, arXiv:1007.2240)

There are no subfactors in the family

B =
(

,
)

.

A connection on the principal graph only exists at a certain index
(one for each supertransitivity). If we try to extend the graphs to
reach that index, we find that the only graphs whose norm is not
too small or too big have two legs which continue infinitely. This is
forbidden, by [Popa ’95], or [P ’08] in conjunction with
[Morrison-Walker ’10].
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Theorem (Morrison-Penneys-P-Snyder, part II, arXiv:1007.2240)

Using connections and quadratic tangles techniques, there are no
subfactors in the family F =(

,
)

.

Theorem (Izumi-Jones-Morrison-Snyder, part III)

Using connections / extended quadratic tangles techniques, there
are no subfactors in the families
Q =

(
,

)
and

Q′ =
(

,
)

except for(
,

)
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Theorem (Coste-Gannon, ’94)

The dimension of an object in a fusion category is a cyclotomic
integer.

Corollary

The index of a finite depth subfactor is a cyclotomic integer.

Proof.

The collection of N − N bimodules is a fusion category, and the
dimension of M there is just the index [N : M].

Theorem (Calegari-Morrison-Snyder, arXiv:1004.0665)

In any family of vines, there are at most finitely many subfactors,
and there is an effective bound.
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Penneys-Tener developed algorithms for efficiently computing
these bounds,

and computed them for the 43 vines in our enumeration.

They looked at the finitely many cases remaining from the
vines, and found obstructions for all but one graph.

Corollary (Penneys-Tener, part IV, arXiv:1010.3797)

There are only four possible principal graphs of subfactors coming
from the 54 vines. They are( )

(
,

)
(

,
)

(
,

)
.
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Theorem

There are exactly ten subfactors other than Temperley-Lieb with
index between 4 and 5.(

,
)

,(
,

)
,(

,
)

,

The 3311 GHJ subfactor (MR999799), with index 3 +
√

3(
,

)
,

Izumi’s self-dual 2221 subfactor (MR1832764), with index
5+
√

21
2

(
,

)
along with the non-isomorphic duals of the first four, and the
non-isomorphic complex conjugate of the last.
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Theorem (Izumi)

The only subfactors with index exactly 5 are group-subgroup
subfactors:

1 ⊂ Z5;

Z2 ⊂ D10;

F×5 ⊂ F5 o F×5 ;

A4 ⊂ A5;

S4 ⊂ S5.
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What’s next?

Get over our dissapointment

Try to extend the classification further

Go fishing
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Somewhere between index 5 and index 6, things get wild:

Theorem (Bisch-Nicoara-Popa)

At index 6, there is an infinite one-parameter family of irreducible,
hyperfinite subfactors having isomorphic standard invariants.

and

Theorem (Bisch-Jones)

A2 ∗ A3 is an infinite depth subfactor at index
2τ2 = 3 +

√
5 ∼ 5.23607.

∗ · · · ,

∗ · · ·
· · ·
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Classification above index 5 looks hard, but we can still fish for
examples!
Here are some graphs that we find. (A few are previously known)(

,
)

(from SUq(3) at a root of unity, index ∼ 5.04892)

At index 2τ2 ∼ 5.23607(
,

)
(

,
)

(
,

)
(

,
)

Emily Peters Classifying subfactors up to index 5, Part I



Background
Classification and construction

The classification up to index 5
Beyond 5

Extending the classification
Fishing

(
,

)
(“Haagerup +1” at index 7+

√
13

2 ∼ 5.30278)(
,

)
at

1
2

(
4 +
√

5 +
√

15 + 6
√

5
)
∼ 5.78339(

,
)

at

3 + 2
√

2 ∼ 5.82843

And at index 6(
,

)
(

,
)

and several more!
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The End!
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