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Galois Theory

Theorem (Fundamental Theorem of Galois Theory)

Suppose L is a finite, Galois field extension of k. The intermediate
subfields between L and k are in one-to-one correspondence with
subgroups of the finite group G = Aut(L/k).

Corollary (Fundamental Corollary of Galois Theory)

A general degree-five polynomial is not solvable by radicals.
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Corollary (Fundamental Corollary of Galois Theory)

A general degree-five polynomial is not solvable by radicals.

Proof.

An equation over k is solvable by radicals if L, the field containing
its solutions, can be reached by adjoining radicals one at a time:

k ⊂ K1 ⊂ · · · ⊂ Kn ⊂ L.

This is equivalent to the algebraic condition that G = Aut(L/k) is
solvable, ie has a composition series in which all quotients Gi/Gi−1
are cyclic groups of prime order:

1 ⊂ G1 ⊂ · · · ⊂ Gn ⊂ G .

But S5 is not solvable.
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Subfactors of von Neumann algebras

Operator algebra is the study of operators on (usually infinite
dimensional) vector spaces. Such vector spaces are unweildly to
say the least. We impose closure/completeness conditions on the
vector spaces (Hilbert spaces) and also on the kinds of operators
we look at (bounded).

Definition

A von Neumann algebra is a unital subalgebra of bounded
operators on a Hilbert space which is closed in a given topology.
A factor A is a highly non-commutative von Neumann algebra:
A ∩ A′ = C · 1.
A subfactor is a pair of factors, one contained in the other:
1 ∈ A ⊂ B.
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Summary: a subfactor is a pair A ⊂ B, where A and B are
(usually) infinite algebras, and both are ‘as non-commutative as
possible.’

Question

Emily, why would you study those things?

Answer

Factors have no 2-sided ideals. This means we can think of them
as ‘non-commutative fields.’ A subfactor, therefore, is a
non-commutative analog of a field extension.

Example

Given a factor R and a finite group G which acts outerly on R,
their semidirect product is again a factor:

R o G = { (r , g) | (r , g) · (s, h) = (r · g(s), gh) } .

Then R ' R o 1 ⊂ R o G is a subfactor.
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Subfactor Invariants

In the galois theory analogy, the role of the automorphism group of
a field extension is played by the ‘standard invariant’ of a subfactor.
Subfactors have three important and related invariants:

Definition

The index of a subfactor A ⊂ B is a real number [B : A] between 1
and ∞.
The principal graphs of a subfactor are a pair of bipartite graphs.
Vertices are irreducible bimodules over A and/or B, and edges
describe behavior under ⊗.
The standard invariant of a subfactor is a graded algebra, with
+, ·, and ⊗. (Actually, it’s a tensor category).

Less precisely, the index measures relative size, and the principal
graph and standard invariant describe how A sits inside B.
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Definition

The index of a subfactor A ⊂ B is a real number [B : A] between 1
and ∞.
The principal graphs of a subfactor are a pair of bipartite graphs.
Vertices are irreducible bimodules over A and/or B, and edges
describe behavior under ⊗.
The standard invariant of a subfactor is a graded algebra, with
+, ·, and ⊗. (Actually, it’s a tensor category).

From the standard invariant, you can compute the principal graphs
by looking at idempotents.
From the principal graph, you can compute the index by looking at
the graph norm (ie, the operator norm of the adjacency matrix).

Theorem (Jones)

The possible indices for a subfactor are

{4 cos(
π

n
)2|n ≥ 3} ∪ [4,∞].
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Example: R o H ⊂ R o G

Again, let G be a finite group with subgroup H, and act outerly on
a factor R. Consider A = R o H ⊂ R o G = B. Then

[B : A] = [G : H] =
|G |
|H|

.

The dual principal graph of A ⊂ B is the induction-restriction
graph for irreducible representations of H and G .

Example (S3 ≤ S4)

trivial standard V sign⊗standard sign

trivial standard sign

(The principal graph is an induction-restriction graph too, for H
and various subgroups of H.)
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Index less than 4

Theorem (Jones, Ocneanu, Kawahigashi, Izumi, Bion-Nadal)

The principal graph of a subfactor of index less than 4 is one of

An = ∗ · · ·
n vertices

, n ≥ 2 index 4 cos2( π
n+1)

D2n = ∗ · · ·

2n vertices

, n ≥ 2 index 4 cos2( π
4n−2)

E6 = ∗ index 4 cos2( π
12) ≈ 3.73

E8 = ∗ index 4 cos2( π
30) ≈ 3.96

Theorem (Popa)

The principal graphs of a subfactor of index 4 are extended Dynkin
diagrams.
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Haagerup’s list

In 1993 Haagerup classified possible principal graphs for
subfactors with index between 4 and 3 +

√
3 ≈ 4.73:

, , , . . .,

(≈ 4.30, 4.37, 4.38, . . .)

, (≈ 4.56)

, , . . . (≈ 4.62, 4.66, . . .).

Haagerup and Asaeda & Haagerup (1999) constructed two of
these possibilities; the first exotic subfactors.

Bisch (1998) and Asaeda & Yasuda (2007) ruled out infinite
families.

In 2009 we (Bigelow-Morrison-Peters-Snyder) constructed the
last missing case. arXiv:0909.4099
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Planar algebras

Definition

A planar diagram has

a finite number of inner boundary circles

an outer boundary circle

non-intersecting strings

a marked point ? on each boundary circle

?

?

? ?
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In normal algebra (the kind with sets and functions), we have one
dimension of composition:

X Y Z
f g

In planar algebras, we have two dimensions of composition:

2

1

?

?

3

? ?

◦2
?

?
=

?

?

? ?
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In ‘normal algebra,’ we have a set and some functions which give it
structure. For example, a group is a set G with a multiplication
law ◦ : G × G → G .
A planar algebra also has sets, and maps giving them structure;
there are a lot more of them.

Definition

A planar algebra is

a family of vector spaces Vk , k = 0, 1, 2, . . ., and

an interpretation of any planar diagram as a multi-linear map

among Vi : ?

?

? ?

: V2 × V5 × V4 → V7

Emily Peters Small-index subfactors



Definition

A planar algebra is

a family of vector spaces Vk , k = 0, 1, 2, . . ., and

an interpretation of any planar diagram as a multi-linear map
among Vi ,

such that composition of multilinear maps, and composition of
diagrams, agree.

V2 × V2 × V2 V6

V2 × V4 × V2

?

?

? ?
2

1

?

?

3

? ??
?
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Definition

A Temperley-Lieb diagram is a way of connecting up 2n points on
the boundary of a circle, so that the connecting strings don’t cross.

For example, TL3:
?

,
?

,
?

,
?

,
?

Example

The Temperley-Lieb planar algebra:

The vector space TLn has a basis consisting of all
Temperley-Lieb diagrams on 2n points.

A planar diagram acts on Temperley-Lieb diagrams by placing
the TL diagrams in the input disks, joining strings, and
replacing closed loops of string by ·δ.
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Example

The Temperley-Lieb planar algebra:

The vector space TLn has a basis consisting of all
Temperley-Lieb diagrams on 2n points.

A planar diagram acts on Temperley-Lieb diagrams by placing
the TL diagrams in the input disks, joining strings, and
replacing closed loops of string by ·δ.

?

?

◦
?

=

?

= δ2

?
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The standard invariant again

Let X =ABB and X =B(Bop)A, and ⊗ = ⊗A or ⊗B as needed.

Definition

The standard invariant of A ⊂ B is the planar algebra of
endomorphisms of powers of X :

End(1) ⊂ End(X ) ⊂ End(X ⊗ X̄ ) ⊂ End(X ⊗ X̄ ⊗ X ) ⊂ · · ·

End(1) ⊂ End(X̄ ) ⊂ End(X̄ ⊗ X ) ⊂ End(X̄ ⊗ X ⊗ X̄ ) ⊂ · · ·

The planar algebra structure comes from labelling strings with X ’s,
and inserting elements of End(X⊗n) into disks with 2n strings.
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subfactor planar algebras

The standard invariant P of a subfactor has some extra structure:

P0 is one-dimensional

All Pk are finite-dimensional

Sphericality: X = X

Inner product: each Pk has an adjoint ∗ such that the bilinear
form 〈x , y〉 := yx∗ is positive definite

Call a planar algebra with these properties a subfactor planar
algebra.

Example

Temperley-Lieb is a subfactor planar algebra.
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Theorem (Jones, Popa)

Subfactors give subfactor planar algebras, and subfactor planar
algebras give subfactors.

This is part of why ‘non-commutative galois theory’ is a good way
to think about subfactors.

This also gives us a new way to construct subfactors, by giving a
generators-and-relations presentation of the associated planar
algebra.
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The Extended Haagerup planar algebra

[Bigelow, Morrison, Peters, Snyder] The extended Haagerup planar
algebra is the positive definite planar algebra generated by a single
S ∈ V16, subject to the relations

S?

?

···
= − S

?

?

···
, S?? ···

= S??
···

= · · · = 0 ,

8

8

8

S

S

?

?

=

8

8

f (8) ,
2n − 1

S

?

2n + 2

f (2n+2) = i

√
[n][n+2]

[n+1]

n + 1 n + 1

n − 1
S

?

S

?

2n + 2

f (2n+2) ,

2n

S?

2n + 4

f (2n+4) = [2][2n+4]
[n+1][n+2]

n + 1 2 n + 1

n − 1 n − 1
S

?

S

?

S

?

2n + 4

f (2n+4)

The extended Haagerup planar algebra is a subfactor planar
algebra!
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The Extended Haagerup planar algebra redux

[Bigelow, Morrison, Peters, Snyder] The extended Haagerup planar
algebra is the positive definite planar algebra generated by a single
S ∈ V16, subject to the relations

S?

?

···
= − S

?

?

···
, S?? ···

= S??
···

= · · · = 0 ,

8

8

8

S

S

?

?

∈ TL8 ,
2n − 1

S

?

= α
n + 1 n + 1

n − 1
S

?

S

?

,

2n

S?

= β
n + 1 2 n + 1

n − 1 n − 1
S

?

S

?

S

?

The extended Haagerup planar algebra is a subfactor planar
algebra!

Emily Peters Small-index subfactors



Proving that the extended Haagerup generators and relations give
a subfactor planar algebra: getting the size right is the hard part.
Let P be the extended Haagerup planar algebra. How do we know
P 6= {0}? How do we know dim(P0) = 1?

Showing that P 6= {0} is technical and boring: It involves finding a
copy of P inside a bigger planar algebra which we understand
better.

dim(P0) = 1 means we can evaluate any closed diagram as a
multiple of the empty diagram. The evaluation algorithm treats
each copy of S as a ‘jellyfish’ and uses the one-strand and
two-strand substitute braiding relations to let each S ‘swim’ to the
top of the diagram.
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Begin with arbitrary planar network of Ss.

Now float each generator to the surface, using the relation.
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The diagram now looks like a polygon with some diagonals,
labelled by the numbers of strands connecting generators.

=

Each such polygon has a corner, and the generator there is
connected to one of its neighbours by at least 8 edges.

Use 8

8

8

S

S

?

?

∈ TL8 to reduce the number of generators, and

recursively evaluate the entire diagram.
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Extending Haagerup’s classification to index 5

The classification is again in terms of principal graphs.

Definition

The vertices of a principal graph pair are (isomorphism classes of)
minimal projections in the standard invariant: Recall that X is the
bimodule ABB ; the vertices are q ∈ End(X⊗n) such that
q2 = q, q∗ = q.

In the standard invariant, there are four kinds of bimodules: A−A,
A− B, B − A and B − B. The principal graph has A− A and
A− B projections, and two projections q and q′ are connected by
an edge if q < q′ ⊗ pX .

The dual principal graph has B − A and B − B projections, and
two projections q and q′ are connected by an edge if q < q′ ⊗ pX .
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Example (The Haagerup subfactor’s principal graph pair)( )
Which pairs can go together? The vertices of a principal graph are
(isomorphism classes of) projections in End(X⊗n)

The graphs must have the same graph norm;

The graphs depths can differ by at most 1;

The pair must satisfy an associativity test:

(pX ⊗ q)⊗ pX
∼= pX ⊗ (q ⊗ pX )

A computer can efficiently enumerate such pairs with index below
some number L up to a given rank or depth, obtaining a collection
of allowed vines and weeds.
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Definition

A vine represents an integer family of principal graphs, obtained by
translating the vine.

Definition

A weed represents an infinite family, obtained by either translating
or extending arbitrarily on the right.

We can hope that as we keep extending the depth, a weed will
turn into a set of vines. If all the weeds disappear, the enumeration
is complete. This happens in favorable cases (e.g. Haagerup’s
theorem up to index 3 +

√
3), but generally we stop with some

surviving weeds, and have to rule these out ‘by hand‘.
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The classification up to index 5

Theorem (Morrison-Snyder, part I, arXiv:1007.1730)

Every (finite depth) II1 subfactor with index less than 5 sits inside
one of 54 families of vines (see below), or 5 families of weeds:

C =
(

,
)
,

F =
(

,
)
,

B =
(

,
)
,

Q =
(

,
)
,

Q′ =
(

,
)
.

Theorem (Morrison-Penneys-P-Snyder, part II, arXiv:1007.2240)

Using planar algebra techniques, there are no subfactors in the
families C, F or B.
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Theorem (Izumi-Jones-Morrison-Snyder, part III,
arXiv:1109.3190)

There are no subfactors in the families Q or Q′.

Theorem (Calegari-Morrison-Snyder, arXiv:1004.0665)

In any family of vines, there are at most finitely many subfactors,
and there is an effective bound.

Corollary (Penneys-Tener, part IV, arXiv:1010.3797)

There are only four possible principal graphs of subfactors coming
from the 54 families( )

(
,

)
(

,
)

(
,

)
.
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Theorem

There are exactly ten subfactors other than Temperley-Lieb with
index between 4 and 5.(

,
)

,(
,

)
,(

,
)

,

The 3311 GHJ subfactor (MR999799), with index 3 +
√

3(
,

)
,

Izumi’s self-dual 2221 subfactor (MR1832764), with index
5+
√
21

2

(
,

)
along with the non-isomorphic duals of the first four, and the
non-isomorphic complex conjugate of the last.
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Theorem (Izumi)

The only subfactors with index exactly 5 are group-subgroup
subfactors:

1 ⊂ Z5;

Z2 ⊂ D10;

F×5 ⊂ F5 o F×5 ;

A4 ⊂ A5;

S4 ⊂ S5.
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Index beyond 5

Somewhere between index 5 and index 6, things get wild:

Theorem (Bisch-Nicoara-Popa)

At index 6, there is an infinite one-parameter family of subfactors
(of the same factor) having isomorphic standard invariants.

and

Theorem (Bisch-Jones)

A2 ∗ A3 is an infinite depth subfactor at index 2τ2 ∼ 5.23607.

∗ · · · ,

∗ · · ·
· · ·
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Classification above index 5 looks hard, but we can still fish for
examples!
Here are some graphs that we find. (A few are previously known)(

,
)

(from SUq(3) at a root of unity, index ∼ 5.04892)

At index 2τ2 ∼ 5.23607(
,

)
(

,
)

(
,

)
(

,
)
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(
,

)
(“Haagerup +1” at index 7+

√
13

2 ∼ 5.30278)(
,

)
at

1
2

(
4 +
√

5 +
√

15 + 6
√

5
)
∼ 5.78339(

,
)

at

3 + 2
√

2 ∼ 5.82843

And at index 6(
,

)
(

,
)

and several more!
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The End!
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