
NOTES ON FOCK SPACE

PETER TINGLEY

Abstract. These notes are intended as a fairly self contained explanation of Fock space and
various algebras that act on it, including a Clifford algebras, a Weyl algebra, and an affine
Kac-Moody algebra. We also discuss how the various algebras are related, and in particu-
lar describe the celebrated boson-fermion correspondence. We finish by briefly discussing a
deformation of Fock space, which is a representation for the quantized universal enveloping

algebra Uq(ŝl`).
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1. Introduction

The term Fock space comes from particle physics, where it is the state space for a system
of a variable number of elementary particles. There are two distinct types of elementary
particles, bosons and fermions, and their Fock spaces look quite different. Fermionic Fock
spaces are naturally representations of a Clifford algebra, where the generators correspond
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to adding/removing a particle in a given pure energy state. Similarly, bosonic Fock space is
naturally a representation of a Weyl algebra.

Here we focus on one example of this construction each for Bosons and Fermions. Our
fermionic Fock space F corresponds to a system of fermionic particles with pure energy states
indexed by Z+1/2. Our space B(0) corresponds to a system of bosons with pure energy states
indexed by Z>0, and our full bosonic Fock space B is a superposition of Z shifted copies of
B(0). There is a natural embedding of the Weyl algebra for B(0) into a completion of the
Clifford algebra for F, which leads to the celebrated boson-fermion correspondence.

We begin by discussing F and B as vector spaces. We present various ways of indexing
the standard basis of F, and describe the boson-fermion correspondence as a vector space
isomorphism between F and B. Since F and B are both vector spaces with countable bases it
is obvious that such an isomorphism exists, so the isomorphism we present is only interesting
in that it has nice properties with respect to the actions of the Clifford and Weyl algebras. A
more intuitive development of the theory (and also how it is presented in [4, Chapter 14]) is
probably to first notice the relationship between the Clifford and Weyl algebras, then derive
the corresponding relationship between the vector spaces. However, we find it useful to have
the map explicitly described in an elementary way.

We next discuss the various algebras that naturally act on our Fock space, and how these
actions are related. These include an infinite rank matrix algebra and various affine Kac-
Moody algebras, as well as the Weyl and Clifford algebras. In particular the algebra of

(Z + 1/2) × (Z + 1/2) matrices naturally acts on F. The affine Kac-Moody algebras ŝl`
naturally embeds into a central extension of a completion of this matrix algebra, as does the

larger affine algebra ĝl`, leading to actions of these algebras on F. We finish by presenting the

Misra-Miwa action of the quantized universal enveloping algebra Uq(ŝl`) on F ⊗C C[q, q−1].
Understanding the relationship between the actions of these various algebras on F has proven
very useful (see [4, Chapter 14]). It is really this representation theory that we are interested
in, not the physics motivations. There will be very little physics beyond this introduction.

These notes are intended to be quite self contained in the sense that they should be compre-
hensible independent of other references on Fock space. We do however refer to other sources
for many important proofs. Much of our presentation loosely follows [4, Chapter 14], which
we highly recommend to anyone who in looking for a deeper understanding of Fock space and
it’s relation to the representation theory of Kac-Moody algebras.

1A. Acknowledgments. This notes were one consequence of a long series of discussions
Arun Ram, so I would like to thank Arun for being so generous with his time. I would also
like to thank Gus Schrader and A.J. Tolland for a helpful comments on earlier drafts.

2. Fock space as a vector space

Fermionic Fock space F is an infinite dimensional vector space. This has a standard basis,
which can be indexed by a variety of objects. In this section we discuss indexing by Maya
diagrams, charged partitions, and normally ordered wedge products. Bosonic Fock space is
essentially a space of polynomials in infinitely many variables. This has a “standard” basis
constructed using Schur symmetric functions. Using the fact that Schur symmetric functions
are indexed by partitions, we define a bijection between the standard bases of F and B, which
can be extended to a vector space isomorphism. Of course there are many isomorphisms of
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vector spaces between B and F. Our choice is justified by the representation theoretic results
in the next section.

2A. Maya diagrams.

Definition 2.1. A Maya diagram is a placement of a white or black bead at each position
in Z + 1/2, subject to the condition that at all but finitely many positions m < 0 are filled
with a black bead and all but finitely many positions m > 0 are filled with a white bead. For
instance,

. . . . . .e e e e e e e e u e u u e e u u e u u u u u
01234567891011 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10-11

Note that we label the real line from right to left. This is done so that later on we more closely
match the conventions of [4]. It is sometimes convenient to think of the black beads as “filled
positions” and the white beads as “empty positions” in a “Dirac sea”.

2B. Charged partitions.

Definition 2.2. A charged partition λ is a pair (λ′, k) consisting of a partition λ′ and an
integer k (the charge).

There is a natural bijection between Maya diagrams and charged partitions: draw a line
above the Maya diagram by placing a segment sloping down and to the right over every white
bead, and a segment sloping down and to the right over every black bead. The result is the
outer boundary of a partition. The charge is determined by superimposing axes with the
origin above position 0 in the Maya diagram, and so that far to the right the axis follows the
diagram. The charge is the signed distance between the diagram and the axis far to the left.
See Figure 1.

We use the notation |λ〉 to denote the standard basis element of F corresponding to the
charged partition λ.

2C. Semi-infinite wedge space.

Definition 2.3. Let VZ+1/2 be the free span over C of {em}m∈Z+1/2.

Definition 2.4. Semi-infinite wedge space is VZ+1/2 ∧ VZ+1/2 ∧ · · ·

Definition 2.5. A semi-infinite wedge product em1∧em2∧em3∧· · · is called normally ordered
if m1 > m2 > m3 > · · · .

Definition 2.6. A semi-infinite wedge product em1 ∧ em2 ∧ em3 ∧ · · · is called regular if, for
all large enough k, one has mk+1 = mk − 1.

There is a bijection between regular normally ordered semi infinite wedges and Maya dia-
grams which takes em1 ∧ em2 ∧ · · · to the Maya diagram with black beads exactly in positions
m1,m2, . . .. For instance, the normally ordered wedge

(1) e2.5 ∧ e0.5 ∧ e−0.5 ∧ e−3.5 ∧ e−4.5 ∧ e−6.5 ∧ e−7.5 ∧ e−8.5 · · ·

corresponds to the Maya diagram shown in Definition 2.1.
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Figure 1. The bijection between Maya diagrams and charged partitions. The
black beads in the Maya diagram correspond to those positions where the rim
of the partition slopes up and to the right. The parts of the finite component
λ′ are the lengths of all the finite “rows” of boxes sloping up at to the left.
Here λ′ = (4, 3, 3, 1, 1). The charge in this example is -1, because far to the left
the line described by the Maya diagram ends up 1 step to the right of the axis.
The charged partition λ corresponding to the Maya diagram is the pair (λ′, k).
We often choose a “level” ` and color the squares of λ′ with cj̄ for residues j̄
mod `. The color of a square b is the position of that square in the horizontal
direction, mod ` (reading right to left).

2D. Fermionic Fock space F. We define fermionic Fock space F to be the free span over
C of all Maya diagrams. The basis of F consisting of Maya diagrams is called the standard
basis. Using the bijections from Section 2B and 2C, the standard basis of F is also indexed
by charged partitions or regular normally ordered semi-infinite wedges.

The charge m part of F is

F(m) := span{charged partitions with charge m}.

In particular, F(0) is just spanned by ordinary partitions. Clearly F = ⊕m∈ZF(m)

2E. Bosonic Fock space B. The bosonic Fock space B is

B := C[x1, x2, x3, . . . ; q, q
−1].

The charge m part of B is

B(m) := qmC[x1, x2, . . .].

Notice that B = ⊕m∈ZB(m).

2F. The boson-fermion correspondence as a map of vector spaces. There is a natural
identification between F and B. This is part of the celebrated boson-fermion correspondence.
The importance of this maps arises because it gives a non-trivial relationship between certain
algebras that act on F and B. We discuss these relationships in Section 3C, but for now we are
content to simply define the map of vector spaces. This uses the theory of Schur symmetric
functions.
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Figure 2. A column strict filing of λ = (4, 2, 2, 1). The function t takes b to
the integer in box b. Recall that “rows” slope up and to the left, and “columns”
slope up and to the right.

Definition 2.7. Fix an ordinary partition λ′. A column strict filling of λ is a function t from
the set of boxes in the diagram of λ′ to Z>0, which is weakly increasing along rows and strictly
increasing along columns. See Figure 2.

Definition 2.8. Let λ′ be an ordinary (i.e. uncharged) partition. The Schur symmetric
function sλ′ in infinitely many variables y1, y2, . . . corresponding to λ′ is

(2) sλ′(y) :=
∑

t a column strict
filling of λ′

∏
boxes b of λ′

yt(b).

Comment 2.9. The Schur symmetric functions are symmetric in the sense that they are
invariant under permutations of the variables yi (this can be shown using some combinatorics,
or by appealing to representation theory). They are polynomials in the sense that, if all
but finitely many of the variables are set to 0, the result is a polynomial. They have many
important properties, most of which arise because (once all but finitely many variables are set
to 0) they can be thought of as the characters of the irreducible representations of gln.

Definition 2.10. For any integer k > 0, let pk = yk1 + yk2 + · · · be the kth power symmetric
function (in infinitely many variables).

Definition 2.11. The character polynomial χλ′ is the unique polynomial such that

χλ′(p1,
1

2
p2,

1

3
p3,

1

4
p4 . . .) = sλ′ .

Comment 2.12. To find χλ′ , one may set yj = 0 for all j larger than the longest column
of λ′. As well, χλ′ cannot depend on pk for any k bigger than the number of boxes in λ′, so
finding any given χλ′ is a finite problem.

Proposition 2.13. There is an isomorphism of vector spaces σ : F → B given by, for any
charged partition λ = (λ′, k), σ(|λ〉) = qkχλ′(x1, x2, . . .). Furthermore, this restricts to an

isomorphism F(m) → B(m) for all m ∈ Z.

Proof. It is well known that Schur polynomials are a basis for the space of all symmetric
functions in infinitely many variables. From this it is clear that {qksλ′} is a basis for B. By
definition, the set of all charged partitions is a basis for F. So the result is immediate. That
it restricts to an isomorphism F(m) → B(m) is also trivial. �
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2G. The inner product. It is often convenient to put an inner product on F, where we
declare {|λ〉} to be an orthonormal basis.

Comment 2.14. For the physics applications discussed in the introduction, it may be desir-
able to use a completion of F. It is not currently clear to me which completion is best. For
instance one may want to take `2({charged partitions}) instead of just the C span. Then one
would have a Hilbert space, but the algebras a∞ and W as we define them below no longer
act. For us these algebras are more important, so we do not take any completion.

3. Fock space as a representation

Nothing in Section 2 explains why Fock space is of interest to so many people. The answer
lies in the fact that several important algebras act naturally on it. We now discuss (some of)
these algebras, how they act, and how they are related.

3A. F as a representation of a Clifford algebra. The Clifford algebra is the associative
algebra Cl generated by ψm, ψ

∗
m for m ∈ Z + 1/2 subject to the relations

ψnψm + ψmψn = 0(3)

ψ∗nψ
∗
m + ψ∗mψ

∗
n = 0(4)

ψnψ
∗
m + ψ∗mψn = δm,n.(5)

It is well known and straightforward to check that Cl acts on Fock space as follows: Use the
description of F in terms of semi-infinite wedges from Section 2C. For m ∈ Z + 1/2 and v a
normally ordered semi-infinite wedge product,

ψm · v = em ∧ v.(6)

ψ∗n is the adjoint of ψ∗ with respect to the inner product from Section 2G. Explicitly,

(7) ψ∗m · v =

{
0 if em does not appear as a factor in v

v′ if v can be expressed as em ∧ v′ for a normally order wedge v′.

Clearly one can obtain any normally ordered wedge v from any other normally ordered wedge w
by applying a finite number of operators ψm and ψ∗n. Thus F is irreducible as a representation
of Cl.

Definition 3.1. C̃l is the completion of Cl in the topology generated by the open sets

X + Clψ∗m and X + Clψ−m for all X ∈ Cl, m > 0. Explicitly, an element of C̃l is an infinite
sum

(8) z +
∑
m<N

Xmψm +
∑
m>M

Ymψ
∗
m,

where z ∈ C, N,M ∈ Z, and all Xm, Ym are elements of Cl.

It is clear that C̃l acts in a well defined way on F, since, for each normally ordered wedge
v, all but finitely many of ψm, ψ−m for m > 0 act trivially on v.

Comment 3.2. When it seems prudent to distinguish X ∈ C̃l from it’s action of F, we use
the notation πF(X) to denote the action.
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3B. B as a representation of a Weyl algebra.

Definition 3.3. The infinite dimensional Heisenberg algebra H is generated by αk for k ∈
Z\{0} and a central element c subject to the relations:

αjαk − αkαj = jδj,−kc.

Definition 3.4. The Weyl algebra W is

W := H/(c− 1).

Proposition 3.5. W acts on B by the follows formulas. Each B(m) is preserved under this
action, and forms an irreducible representation for W.

αk →
∂

∂xk
if k > 0

αk → multiplication by − kx−k if k < 0

Proof. This is a very straightforward exercise. �

Comment 3.6. When it seems prudent to distinguish Y ∈ W from it’s action of B, we use
the notation πB(Y ) to denote the action.

3C. The boson-fermion correspondence. Proposition 2.13 gives an isomorphism of vector
spaces σ : F→ B. This isomorphism was chosen because it reveals an important relationship
between the algebras Cl and W, which is known as the boson-fermion correspondence. We
now explain that relationship, referring to [4, Chapter 14] for rigorous proofs.

Definition 3.7. For Y ∈ W, let πF(Y ) = σ−1 ◦ πB(Y ) ◦ σ. That is, πF(Y ) is the operator on
F induced from πB(Y ) by the vector space isomorphism σ : F→ B.

Proposition 3.8. (see [4]) For all k 6= 0,

πF(αk) = πF
∑

m∈Z+1/2

ψmψ
∗
m+k, πF(q) = πF(s).

Since for k 6= 0 we have ψmψ
∗
m+k = ψ∗m+kψm, it is clear that πF(αk) ∈ C̃l. Thus Proposition

3.8 gives is a simple imbedding of W into C̃l. It is natural to ask if one can go the other way,
and express Cl in terms of W. All elements of W preserve the subspaces F(m) of F, and the
generators of Cl clearly do not preserve these subspaces. So we will clearly need to introduce
some new operators on the W side. It turns out that it suffices to introduce the following
simple “shift” operator.

Definition 3.9. s is the operator of F defined by s|λ′, k〉 = |λ′, k+1〉. Note that s corresponds
to multiplication by q under the vector space isomorphism σ : F→ B.

Introduce the following power series, noticing that the coefficient of each power of n in each
expression is a well defined operator on F, since all but finitely many terms act as zero on any
fixed |λ〉.
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ψ(z) =
∑

m∈Z+1/2

zmπF (ψm)(9)

ψ∗(z) =
∑

m∈Z+1/2

z−mπF (ψ∗m)(10)

Γ+(z) = exp
∑
k∈Z>0

z−k

k
πF (αk)(11)

Γ−(z) = exp
∑
k∈Z>0

zk

k
πF (α−k).(12)

Definition 3.10. ch : F → C is the linear functional which takes |λ〉 = (λ′, k) to the charge
k.

The following is [4, Theorem 14.10], adjusted slightly to match our conventions.

Proposition 3.11.

ψ(z) = szch+1/2Γ−(z)Γ+(z)−1

ψ∗(z) = s−1z−ch−1/2Γ−(z)−1Γ+(z).

This in principle expresses the fermionic operators ψm and ψ∗m in terms of the αk. Due to
the appearance of the factor zch in these formulas, the expression for the action of ψm or ψ∗m
on |λ〉 in terms of the αk depends on the charge of λ.

The proof of Proposition 3.11 is not trivial, although does not use much difficult machinery.
It proceeds roughly as follows. Kac first shows that the right sides of the equations in Propo-
sition 3.8 generate an algebra of operators on F which is isomorphic to W (this is not hard

once one understands the imbedding of the matrix algebra a∞ into C̃l, see Comment 3.28).
This immediately implies the existence of some vector space isomorphism from B to F which
satisfies Proposition 3.8. One then studies commutation relations between the αk and the
generating functions ψ(z) and ψ∗(z) to prove that this isomorphism also satisfies Proposition
3.11. The final step is to show that the isomorphism is given by Proposition 2.13. So really
these notes are completely backwards!

Example 3.12. The action of αk on the standard basis has a very simple description when
the standard basis of F is indexed by Maya diagrams. If v is a Maya diagram, then αkv is
the sum of (−1)j(v,v

′)v′ over all v′ obtained from v by moving a single black bead to the right
exactly k places, where j(v, v′) is the number of black beads that are “jumped” by the bead
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that moves. For example,

(13)

α−4(. . . . . .e e e e e e e e u e u u e e u u e u u u u u ) =

. . . . . .e e e e u e e e e e u u e e u u e u u u u u
−. . . . . .e e e e e e u e u e e u e e u u e u u u u u
+. . . . . .e e e e e e e u u e u e e e u u e u u u u u
+. . . . . .e e e e e e e e u e u u e u u u e e u u u u
−. . . . . .e e e e e e e e u e u u e e u u u u u u e u

and

(14)

α2(. . . . . .e e e e e e e e u e u u e e u u e u u u u u ) =

−. . . . . .e e e e e e e e u e e u u e u u e u u u u u
+. . . . . .e e e e e e e e u e u e e u u u e u u u u u
−. . . . . .e e e e e e e e u e u u e e e u u u u u u u

Comment 3.13. Fix n > 0. If the standard basis for F is indexed by charged partitions,
the basis vectors which have non-zero coefficient in αn|λ〉 are exactly those charged partitions
which are obtained from |λ〉 by adding a “ribbon” or “rim-hook” of length n to |λ〉. This is
part of the reason that ribbons appear in the context of Fock space (see for instance [5]).

Comment 3.14. It may at first seem unfortunate that we need to introduce the power series
in Equations (9)-(12), but it turns out that these power series themselves are very useful. Each
has the property that it acts on any v ∈ F to give a Laurent power series is z with coefficients
in F. It follows that each of the products below is well defined as a map from F to Laurent
power series in two variables with coefficients in F. It follows from results in [4, Chapter 14]
(see [7, Appendix B2] for this exact statement) that these power series satisfy the following
simple commutation relations.

Γ+(x)Γ−(y) = (1− xy)Γ−(y)Γ+(x)(15)

Γ+(x)ψ(z) = (1− z−1x)−1ψ(z)Γ+(x)(16)

Γ−(x)ψ(z) = (1− xz)−1ψ(z)Γ−(x)(17)

Γ+(x)ψ∗(z) = (1− z−1x)ψ∗(z)Γ+(x)(18)

Γ−(x)ψ∗(z) = (1− xz)ψ∗(z)Γ−(x).(19)

Here (1− a)−1 is always expanded as 1 + a+ a2 + · · · . Equality is interpreted as saying that,
once each side is applied to any fixed v ∈ F, all coefficients of the resulting power series agree.
These facts have been put to great use in, for example, [8]. There Okounkov that Reshetikhin
interpret the Γ±(z) as transition functions, and use the above commutation relations to find
limit shapes and correlation function for systems of random plane partitions.

3D. Fock space as a representation of glZ+1/2 and a∞. Here we construct actions of the
matrix Lie algebras glZ+1/2 and a∞ on F. The actions of glZ+1/2 on Fock space is constructed
by imbedding it into the Clifford algebra Cl, and the action of a∞ is constructed is the same
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way, except that one must imbed it in the completion C̃l. These actions can also easily be
defined directly.

Definition 3.15. MZ+1/2 is the algebra of matrices with rows and columns indexed by Z+1/2,
in which all but finitely many entries are 0. Let Em,n denote the matrix with a single 1 in
position (m,n) and zeros everywhere else.

Definition 3.16. glZ+1/2 is the Lie algebra corresponding to MZ+1/2. That is, glZ+1/2 is
equal to MZ+1/2 as a vector space, and the Lie bracket is defined by

[X,Y ] = XY − Y X.
Definition 3.17. A Lie-associative map from a Lie algebra g to an associative algebra A is a
map σ such that, for all X,Y ∈ g, σ([X,Y ]) = σ(X)σ(Y )− σ(Y )σ(X).

The following can easily be verified by directly checking relations.

Proposition 3.18. (see [4]) There is a Lie-associative embedding of glZ+1/2 into Cl given by
Em,n → ψmψ

∗
n.

Hence F carries an action of glZ+1/2. We would like to extend this to an action of the larger
algebra of matrices with non-zero entries on only finitely many diagonals, but where infinitely
many non-zero entries are allowed on each of those diagonals. This is almost possible since,
for any standard basis vector |λ〉 and any k 6= 0, only finitely many of {Em,m+k} act on |λ〉
non-trivially. However, at k = 0 infinitely many of these terms act non-trivially, so the action
of glZ+1/2 on F does not extend to this larger algebra. To fix the problem, we must introduce
a central extension.

Definition 3.19. Let glcZ+1/2 be the central extension of glZ+1/2 by a central element c, with

Lie bracket defined as follows. We use the notation X to mean the matrix X thought of as
an element of glcZ+1/2.

[Em,nEp,q] =


Em,nEp,q − Ep,qEm,n + δm,qδn,pc if m > 0 and n < 0

Em,nEp,q − Ep,qEm,n − δm,qδn,pc if m < 0 and n > 0

Em,nEp,q − Ep,qEm,n if m and n have the same sign.

It is straightforward to check that this is in fact a central extension.

Comment 3.20. This central extension is trivial, since there is an isomorphism of Lie algebras
glcZ+1/2 → glZ+1/2 ⊕ Cc given by

Em,n →

{
Em,n if m 6= n or m < 0

Em,n − c if m = n and m > 0.

However, it will be non-trivial once we allow certain matrices with infinitely many non-zero
entries.

Proposition 3.21. There is a Lie associative imbedding of glcZ+1/2 into Cl defined by

Em,n → ψmψ
∗
n if m 6= n or m > 0(20)

En,n → −ψ∗nψn if n < 0(21)

c→ 1.(22)



NOTES ON FOCK SPACE 11

In particular, the action of Cl on F introduces an action of glcZ+1/2 on F.

Proof. Consider the action of glZ+1/2 ⊕ Cc on F by using the normal action of glZ+1/2, and
allowing c to act as 1. Then use the isomorphism from Comment 3.20. For m 6= n or m > 0,
the action of Em,n is immediate. For n negative, En,n acts as ψnψ

∗
n− 1. By Equation (5) this

is equal to −ψ∗nψn. �

Proposition 3.22. For any standard basis vector |λ〉 of F and any fixed k ∈ Z, Em+k,m ∈
M c

Z+1/2 satisfies Em+k,m|λ〉 = 0 for all but finitely many m. �

Proof. This is obvious from Proposition 3.21, and the action of Cl on F. �

Definition 3.23. g̃lZ+1/2 is the Lie algebra of (Z + 1/2)× (Z + 1/2) matrices such that, for

all but finitely many k ∈ Z and all m ∈ Z+ 1/2, Em+k,m = 0. The Lie bracket is the standard
bracket for matrices, [X,Y ] = XY − Y X.

Comment 3.24. In words, g̃lZ+1/2 consists of matrices which may have infinitely many non-
zero entries, but where all non-zero entries lie on a finite number of diagonals. It is clear that
matrix multiplication is well defined on the set of such matrices.

Definition 3.25. a∞ is the central extension of g̃lZ+1/2, defined by

[Em,nEp,q] =


Em,nEp,q − Ep,qEm,n + δm,qδn,pc if m > 0 and n < 0

Em,nEp,q − Ep,qEm,n − δm,qδn,pc if m < 0 and n > 0

Em,nEp,q − Ep,qEm,n if m and n have the same sign.

Certain infinite sums of these matrix elements are present in a∞, but it is straightforward
to check that the central extension is well defined in the sense that the coefficient of c that
appears in any bracket is finite. That this is a Lie algebra then follows from the fact that
glcZ+1/2 is a Lie algebra (and can also be directly verified).

Proposition 3.26. The imbedding of glcZ+1/2 into Cl extends to an embedding of a∞ into C̃l.

In particular, F is a representation of a∞.

Proof. This follows immediately from the definition of C̃l. �

Comment 3.27. a∞ is a non-trivial central extension of g̃lZ+1/2. The action of glZ+1/2 on F

does not extend to an action of g̃lZ+1/2 on F, so the extension is crucial.

Comment 3.28. The images of the αm in C̃l from Proposition 3.8 are naturally contained
in the image of a∞; they are matrices with all 1 on one diagonal, and all 0 everywhere else. It
is easy to see that these matrices have the same commutation relations as the generators of
W, which in fact proves that the map from Proposition 3.8 gives an action of W on F.

3E. Fock space as a representation of ŝl` and ĝl`. It turns out that each F(m) carries

an action of ŝl`. F(m) is not irreducible under this action, but all the irreducible components

are very similar; they are isomorphic as representations of the derived algebra ŝl
′
`. This is

explained by the fact that there is a larger affine algebra ĝl` which acts on F(m), and F(m) is

irreducible under the action of ĝl`.
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Definition 3.29. sl` is the Lie algebra of ` × ` matrices with trace 0. gl` is the Lie algebra
of all `× ` matrices. We use the notation Xi,j to denote the matrix with a 1 in position (i, j)
and zeros everywhere else (this is to distinguish from Em,n ∈ glZ+1/2).

Definition 3.30. The affine Lie algebra ŝl` is, as a vector space (sl` ⊗C C[t, t−1])⊕Cc⊕Cd.
The Lie bracket is defined by

[X ⊗ tn, Y ⊗ tm] = (XY − Y X)⊗ tm+n +mδm−n(X,Y )c(23)

[d,X ⊗ tn] = nX ⊗ tn(24)

c is central.(25)

Here (X,Y ) is the killing form tr(ad(X)ad(Y )), re-normalized so that (X1,`, X`,1) = 1.

Definition 3.31. ŝl
′
` is the derived algebra of ŝl`. Note that as a vector space over C, ŝl

′
n is

(sl` ⊗ C[t, t−1])⊕ Cc.

Proposition 3.32. (see [4, Chapter 7]) ŝl` is isomorphic to the affine Kac-Moody algebra
with the `-node Dynkin diagram

u u u u u u
uH
HHHH

�
���� . . .

In particular, ŝl
′
` is generated by Chevalley generators Ẽī, F̃ī for i ∈ Z/`Z. Furthermore, the

isomorphism can be chosen such that the following hold:

Ẽī → Xi+1,i ⊗ t0 i = 1, . . . `− 1(26)

F̃ī → Xi,i+1 ⊗ t0 i = 1, . . . `− 1(27)

Ẽ0̄ → X1,` ⊗ t1(28)

F̃0̄ → X`,1 ⊗ t−1.(29)

Comment 3.33. For 1 ∈ Z/`Z, Ẽī is sent to a lower triangular matrix, not an upper triangular

one. This is done so that the natural way of letting ŝl` act on F will give a positive level
representation instead of a negative level representation.

Proposition 3.34. (see [4, Chapter 14])

(i) There is a Lie-associative embedding of ŝl
′
`/(c− 1) into a∞ ⊂ C̃l given by, for Xi,j ∈

ŝl`,

Xi,j ⊗ tm →
∑

k∈Z+1/2

ψi−1/2+m`+k`ψ
∗
j−1/2+k`

Thus F carries an action of ŝl
′
`.

(ii) Each F(m) is preserved by this action.

(iii) Every irreducible component of F(m) under this action is isomorphic to the highest

weight representation VΛm̄ as a representation of ŝl
′
`.

Proof. Parts (i) and (ii) are proven in [4]. We delay the proof of Part (iii) since it follows

immediately from the discussion of the ĝl` case below. �
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The action of the Chevalley generators of ŝl` on F can be described combinatorially:

Proposition 3.35. Let λ be a charged partition. Then for all i ∈ Z/`Z,

Ẽī|λ〉 :=
∑

λ\µ is an
i colored box

|µ〉 F̃ī|λ〉 :=
∑

µ\λ is an
i colored box

|µ〉.(30)

Here the boxes are colored as in Figure 1.

Proof. This is immediate from the definition of the actions of Ẽī and F̃ī. �

Proposition 3.36. The action of ŝl
′
` on F can be extended to an action of ŝl` on F by letting

d act on |λ〉 as multiplication by

k(λ) := # squares in the finite part of λ colored c0,

where the coloring is as in Figure 1.

Proof. It suffices to prove that d commutes with Ei, Fi for i 6= 0, E0d = (d + 1)E0, and
F0d = (d− 1)F0. These are all straightforward. �

The action of ŝl` on F(m) can in fact be extended to an action of a larger affine algebra ĝl`
as follows

Definition 3.37. The affine Lie algebra ĝl` is, as a vector space (gl` ⊗C C[t, t−1])⊕Cc⊕Cd.
The Lie bracket is defined by

[X ⊗ tn, Y ⊗ tm] = (XY − Y X)⊗ tm+n +mδm−n(X,Y )c(31)

[d,X ⊗ tn] = nX ⊗ tn(32)

c is central.(33)

Here (X,Y ) is the killing form tr(ad(X)ad(Y )), renormalized so that (X1,`, X`,1) = 1. Let ĝl
′
`

denote (gl` ⊗C C[t, t−1])⊕ Cc (which is clearly a Lie-subalgebra).

Proposition 3.38..

(i) There is an embedding of ĝl
′
`/(c− 1) into C̃l given by, for Xi,j ∈ ĝl`,

Xi,j ⊗ tm →
∑

k∈Z+1/2

ψi−1/2+m`+k`ψ
∗
j−1/2+k`

Thus F carries an action of ĝl
′
` which agrees with from Proposition 3.34 on the sub-

algebra ŝl
′
` .

(ii) The action can be extended as in Proposition 3.36 to give an action of the whole affine

algebra ĝl`.
(iii) Each F(m) is preserved by this action, and forms a single irreducible representation

of ĝl`.
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Proof. Parts (i) and (ii) follow exactly as in the ŝl` case. It is also clear that each F(m) is

preserved under the action of ĝl`. It remains to show that each F(m) is irreducible. For this,
we use that fact that F(m) is irreducible as a representation of W. Thus it suffices to show

that for all k, πFαk is in the algebra of operators generated by ĝl`. For each residue j̄ mod `,
let

(34) Cj̄ =
∑̀
a=1

Xa+j,a.

For example, if ` = 4 then

(35) C0̄ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , C3̄ =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

It is clear from definitions that for all k 6= 0 the actions of Ck̄ ⊗ tbk/`c and αk on F agree. �

Comment 3.39. One can show that ĝl
′
` is isomorphic as a Lie algebra to ŝl

′
`⊕W⊕C1/(c

ŝl`
=

cW), where c
ŝl`

= cW means the central elements c in ŝl
′
` and W are identified. Here the

copy of W is the span of Id ⊗ zk for all k 6= 0, and 1 is Id ⊗ t0. For this reason, Proposition

3.38 implies that there is an action of W on F which commutes with the action of ŝl
′
`. This

commuting action has been noticed by many people.

Note that Proposition 3.38 along with Comment 3.39 completes the proof of Proposition
3.34 part (iii).

3F. The q-deformed Fock space Fq; a representation of Uq(ŝl`). We now describe the

Misra-Miwa Fock space for Uq(ŝl`). This is a representation of Uq(ŝl`) originally developed by
Misra and Miwa [6] using work of Hayashi [3] (see also [1, Chapter 10]). It can be thought of

as a q-deformation of the action of ŝl` on F described in Section 3E. We refer to [2] for the

definition of Uq(ŝl`). To fit with our conventions, we use Ẽī and F̃ī to denote the Chevalley
generators, which in [2] are denoted by X+

i and X−i .

Definition 3.40. Let Fq := F⊗C C(q).

Definition 3.41. Let λ and µ be charged partitions such that λ is contained in µ, and µ\λ
is a single box. Set

(i) Ai(λ) := {ci colored boxes n| λ ∪ n is a partition}.
(ii) Ri(λ) := {ci colored boxes n| λ\n is a partition}.
(iii) Na

i (µ\λ) := |{n ∈ Ai(λ)|n is to the left of µ\λ}|−|{n ∈ Ri(λ)| n is to the left of µ\λ}|.
(iv) N r

i (µ\λ) := |{n ∈ Ai(λ)|n is to the right of µ\λ}|−|{n ∈ Ri(λ)| n is to the right of µ\λ}|.

Theorem 3.42. (See [1, Theorem 10.6]) There is an action of Uq(ŝl`) on Fq defined by

Ẽī|λ〉 :=
∑

λ\µ is an
i colored box

q−N
r
i (λ\µ)|µ〉 F̃ī(bλ) :=

∑
λ\µ is an

i colored box

qN
a
i (µ\λ)|µ〉.(36)
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Fq is not irreducible, but decomposes in the same way as F decomposes into irreducible

representations of ŝl`. It is clear by comparing with Proposition 3.35 that, when q is set to 1,

one recovers the normal action of ŝl` on Fock space.
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