CONSTRUCTING THE R-MATRIX FROM THE QUASI R-MATRIX.

PETER TINGLEY

1. INTRODUCTION

These notes are mainly a companion to [T], and we refer to that paper for any notation which
we do not define here. In particular, in [T] we needed the following statement about the universal
R-matrix for U,(g):

Proposition 1.1. Let g be a symmetrizable Kac-Moody algebra. Then Uy(g) has a unique universal
R-matriz of the form

(1) R=A(1o1+ 3 Xy @Y3),
positive integral
weights B (with
multiplicity)

where Xg has weight 3, Y5 has weight —3, and for allv € V and w € W, A(v@w) = ¢t ©)wtw)),

When g is of finite type, this follows quite easily from, for example, [CP, Theorem 8.3.9]. In the
case of a general symmetrizable Kac-Moody algebra, the only source we know is [L, Chapter 4].
However, in [L], they use the so called quasi R-matrix in place of the universal R-matrix. In the
following we show how to recover Proposition 1.1 from their statements.

2. THE CONVERSION

We have kept the statements out of [L] as close to the original as possible, but have made minor
modifications to avoid notational confusion. In particular, we have changed the notation for the
components of the quasi R-matrix from 0, to M”. Also, A in [L] is A° in our notation (see
below). We state by recalling the usual definition of a universal R-matrix.

—~—

Definition 2.1. A universal R-matriz is an element R of Uy(g) ® Uy(g) such that O’?}:W := FlipoR
is a braiding on the category of U,(g) representations. Equivalently, an element R is a universal
R-matriz if it satisfies the following three conditions

(i) For alluw € Uy(g), RA(u) = A°P(u)R.
(ii) (A ®1)R = Ri3Ra3, where R;; mean R placed in the i and j** tensor factors.
(iii) (1 ® A)R = Ri3R12.
Definition 2.2. The bar-coproduct A is defined by
AE; =E oK '+1®E;
AF;, =F,®1+K;®F,
AK; =K;®K;
Definition 2.3. The opposite coproduct is A°P := Flipo A.
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Definition 2.4. The bar-opposite coproduct is A° := Flipo A.
We now state the main existence theorem from [L] for the quasi R-matrix.

Theorem 2.5. [L, Theorem 4.1.2 and Proposition 4.2.2] There is a unique family of elements
M7 € Uy(g); ® Ug(g)F with M° = 1® 1 and such that the “quasi R-matriz” M := >, MY
satisfies, for all uw € Uy(g), AP(u)M = MA°P(u). Furthermore,

() (A @ 1)(M) = T,y repr My (16 Ky @ DMy

(il) 1@ APYM) =3 neps Mi5(1® Ky @ 1) My .
Here Mg means MY in the i and j" factor of the tensor product (tensored with 1 in the other

positions).

In order to derive Proposition 1.1 from Theorem 2.5, we need some terminology and a few
lemmas.

Definition 2.6. Let J be the operator which acts on 'V by Jv = ¢(Wt0):wt()/2+(wt().p)yy - Let C;
be the algebra automorphism of U,(g) defined by

CJ(Ez> - KiEi
(2) Cy(F;) = FK; !
CJ(KH) =Ky

Comment 2.7. It is a simple calculation to show that C'; actually is an algebra automorphism.
Comment 2.8. We will use the notation A(J) to denote J acting on a tensor product.

Lemma 2.9. J, C; and the element A from Proposition 1.1 have the following properties:

(i) A= teJ HAW) = A)(J L ® 1), where, as in Proposition 1.1, A(v @ w) =
q(wt(v)®wt(w),v R w.

(i) For allu € Uy(g), (C; @ Cy)A(u) = A%(Cy(u)).
(iii) The following diagram commutes

1% Vv
RN N
@) @,

Uq(g)

(iv) For allu € Uy(g), A7 A(u) = A°P(u)A~1.

Proof. For (i), fix weight vectors v and w, and simply do all three calculations on v ® w.
For (ii) one needs only check the equality on the generators E;, F; and K;. Each is a straight-
forward calculation.
For (iii), pick a weight vector v € V, and a generator X = E;, F; or K;. It is then a simple
calculation to check that J(X (v)) = Cy(X)(J(v)). For example, if X = E; , then
J(Eiv) _ q(wt(Eiv),wt(Eiv))/2+(wt(Eiv),p)EiU — q(wt(v)+o¢i,wt('u)+ai)/2+(wt(v)+ai,p)Eiv —
(3) _ q(wt(v)Jrai,ozi)Eiq(wt(v),wt(v))/2+(wt(v)7p)v _ KZElJ(U) _ CJ(EZ)J(U)

Here we have used the fact that (a;, p) = (v, «;)/2.
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For (iv): By parts (i), (ii) and (iii), the following diagram commutes:

A1
INO
Uev L Uev Jed Uev
) ) )
C;eC
Uq(9) @ Uy(g) Uq(9) @ Uy(g) — Uy(8) © Uq(g)
TA ba Faor
- | i |
Uq(0) - Uq(g) - Uy(g)
The equality is given by fixing u € U,(g), and following the diagram around in the two directions,
recalling that A= = (J @ J)A(J)™L. O

Proposition 2.10. R := M A~ is a universal R-matriz.

Proof. Tt suffices to check the three conditions in Definition 2.1.
(i): Fix u € Uy(g). Then

(4) RA(u) = MA™'A(u)
(5) = MA°P(u)A™?
(6) = AP(u)MA™".

Here (5) follows from Lemma 2.9 part (iv), and (6) follows from Theorem 2.5.
Part (ii): Let si2 be the permutation the interchanges the first and second tensor factors.

(7) (A D)(R)(u®vew)

(8) =(A1)(MA Hu®vew)

(9) =512(AP @ 1)(MA Hs12(u®@v @ w)

(10) —s1a(A% @ 1) Mg (TR0 (4 & 4 & )

(11) =s12 Y MRB(1 @ K_y @ )My g LN () @y @ )
voy'eQt

(12) Ssn D Mg (@) A g ) (4 5 4 9 00)
YeQt

(13) —s19 Z Myq~ (Vi) y) pp o= (wiw) wiw) (4 @ 4 @ )
v et

(14 =519 Mo3(Ag3) P Mi3(A13) v @ u® w)

(15) =s12R23R13512(u @ v @ w)

(16) =Ri3Ra3(u®v®w)

(iii): Follows by a similar calculation to (ii). O

The following lemma essentially says that the inverse of a braiding is still a braiding.

—_—~—

Lemma 2.11. R € U,(g) ® U,(g) is a universal R-matriz if and only if Ry is a universal R-
matriz.
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Proof. Assume R is a universal R matrix. It suffices to show that the three conditions of Definition
2.1 hold for Ry'.
(i): Fix u € Uy(g).

(17) Ry'A(u) = Flip(R™' A% (u))
(18) = Flip(A(u)R™)
(19) = AP(u) Ry,

Here Equation (18) follows by rearranging Definition 2.1 part (i) for R.
(iii): Let s321 be the permutation 3 — 2 — 1 — 3.

(20) (A® )Ry = s3o1(1®@ A)R™!
(21) = s31 Ry Ry
(22) = Ry Ry,

(23) = (Ra; )13(Ray')2s.

Here Equation (21) follows from Definition 2.1 part (iii) for R.
(iii): Let s123 be the permutation 1 — 2 — 3 — 1.

(24) (1© ARy = s123(A@ )R

(25) = s123Ro3 Ryy

(26) = R§11R2_11

(27) = (B3 )1s(Ra e

Here Equation (25) follows from Definition 2.1 part (ii) for R. O

Proof of Proposition 1.1. By Theorem 2.5 and Proposition 2.10, there is a unique universal R-
matrix of the form

(28) (1o1+ 3 Yp® Xg) A7,

positive integral
weights [ (with
multiplicity)

where each X3 has weight 3 and Y3 has weight —3. By Lemma 2.11, there is also a unique universal
R-matrix of the form

(29) A (1@1+ 3 X5® Yg)il.

positive integral
weights § (with
multiplicity)

Clearly A%! = A, and, for some elements X ;3 of weight 8 and Yﬁ' of weight —23,

-1
o)  (1e1+ 3 Xp@Ys) =(1o1+ 3> X5 @ Y3).
positive integral positive integral
weights § (with weights 3 (with
multiplicity) multiplicity)

The proposition follows. O
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