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0.1. Let us consider a finite graph in which no edge joins a vertex with itself. 
This graph defines a symmetric matrix (aij) indexed by pairs of vertices of the 
graph, where a,, = 2 and -aij is the number of edges joining i ,  j if i # j . 
Let g be the Lie algebra over Q defined in terms of this matrix by the usual 
Serre relations (a Kac-Moody Lie algebra), let u be its enveloping algebra, and 
let U be the quantized version of u discovered by Drinfeld and Jimbo (a Hopf 
algebra over Q ( v ) )  . 

Let u = u- 8 u0 @ u+ (resp. U = U- @ UO @ U' ) be the triangular decom- 
position of u (resp. U ). 
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0.2. The main discovery of [L2] was the existence of a canonical basis for U-

(in case of graphs of type A,  D ,  E ) with some very remarkable properties. 
Among these properties were integrality, a positivity property for structure con- 
stants, compatibility with various natural filtrations, and the fact that this basis 
gave rise to canonical bases in all finite-dimensional irreducible representations. 

This was done by two quite different methods, an elementary method and a 
geometric method. 

0.3. In this paper, the geometric method of [L2] is extended to the case of 
arbitrary graphs; we obtain a canonical basis of U- with the same kind of 
properties as in the ordinary case. 

Let us fix an orientation for our graph (or a quiver). From the work of 

Ringel [R] it is known that the algebras u- , U- can be reconstructed purely in 
terms of the representation theory of this quiver, in the case of graphs of type 
A ,  D ,  E . (In a not yet written work, Ringel has extended this to the case of 
Dynkin graphs of affine type; using a variant of Ringel's method, Schofield [S] 
has extended Ringel's results on u- , but not those on U- , to arbitrary finite 
graphs.) 

It turns out that by looking more closely at the geometry of representations 
of the quiver one can get not only U- but also a canonical basis for it. 

It is well known that U- is naturally graded: U- = @, U, where v are 

functions on the vertices of our graph with values in N and U i  are finite 
dimensional. 

Assume that we are given a complex vector space V, for each vertex i of 
our graph so that dim Vi = v (i) . 

Let E = $Hom(Vi, V,) where the sum is over all arrows i + j in the 
orientation. This is a finite-dimensional complex vector space on which the al- 
gebraic group G, = niAut V, acts naturally. The points of E may be regarded 
as representations of our quiver (oriented graph). 

We would like to produce from E finitely many objects which should para- 
metrize a basis of U, . 

In the A ,  D ,  E case this task is easily solved: one takes the set of all G,-
orbits on E . (This set is finite by Gabriel's theorem.) This does not make sense 
in the general case; there may be infinitely many orbits. 

To get around this difficulty, we imitate the definition of character sheaves 
in [Ll]. As in that theory we have a finite number of varieties (corresponding 
to various kinds of flags) that map properly to E . The direct image of the con- 
stant sheaf under each of these maps decomposes as a direct sum of irreducible 
perverse sheaves (up to shift), and the perverse sheaves that appear in this way 
form a finite collection of objects, which satisfies our requirements. 

We can show that this class of perverse sheaves is closed under a certain 
multiplication operation; this eventually leads to a construction of U- endowed 
with a canonical basis provided by the perverse sheaves as above. (That basis 
is in fact independent of the chosen orientation.) 
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0.4. As shown by Drinfeld and Jimbo, U- @uOhas a natural comultiplication. 

We are able to recover this comultiplication in the language of perverse sheaves. 

(We are again imitating character sheaves, namely the restriction functor of 

[L2].) As a consequence, we obtain a positivity property for the canonical 
basis, with respect to comultiplication, which is new even in the A ,  D ,E case. 

0.5. Another aspect of this work is a study of the singular supports of the per- 

verse sheaves connected with our canonical basis. We show that these singular 

supports are contained in a certain remarkable Lagrangian variety (already in- 

troduced in [L3]) whose definition is again reminiscent of what happens for 

character sheaves. 

0.6. In a sequel to this paper, we will describe explicitly the perverse sheaves 

connected with our canonical basis in the case of affine Dynkin graphs, in the 

sense that we will describe their support in the framework of the Dlab-Ringel 

theory [DR], and the corresponding local systems on an open part of the support. 

Remarkably, the theory of character sheaves of GL, enters in this description. 

0.7. As we already mentioned, in [L2], a second construction of the canonical 

basis was given; this was elementary, in the sense that no results from topology 

or algebraic geometry were used. Soon after [L2] became available, Kashiwara 

announced an elementary construction in a somewhat similar spirit of a canon- 

ical basis that made sense for general graphs. 

(Kashiwara's construction is given in his very interesting preprint On crystal 
bases of the q-analogue of universal enveloping algebras, which I received after 

this paper had been submitted.) 

Note that the elementary approach to canonical bases, while being elegant, 
cannot provide positivity results of the kind provided by the perverse sheaves 

approach. 

1.1. We assume given a finite nonempty graph; in this graph, two different 

vertices may be joined by several edges, but no edge may join a vertex with 

itself. Let I be the set of vertices of our graph, and let H be the set of pairs 

consisting of an edge together with an orientation of it. 

Giving such a graph is the same as giving 

(a) two finite sets I ,  H with I nonempty, 

(b) a map H + I denoted h + h' , 
(c) a map H + I denoted h + h'' and 

(d) a fixed point free involution h + of H ; 
these are subject to 

(e) (z)'h" and= 

(f) h' # h" 
for all h E H . 

An orientation of our graph is a choice of a subset i2 c H such that n u n= 

H ,  SZnIl=i~i. 
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1.2. Let k be an algebraically closed field. 
Let 7 be the category of finite-dimensional I-graded vector spaces V = 

@,,, Vi over k with morphisms being linear maps respecting the grading. We 
shall write V E 7 to indicate that V is an object of 7 . 

Let N' be the set of all functions v:  I + N . For each u E N' we denote by 
7 the full subcategory of 7 whose objects are those V such that dimV, = 

v(i)  for all i E I .  Then each object in 7 belongs to 7 for a unique u , and 
all objects of 7 are isomorphic to each other. 

Given V E 7, let 

of E, consisting of all vectors x = (xj) such that xh = 0 whenever h E 

H - H ' .  
The algebraic group G, = n,Aut(V,) (naturally a subgroup of Aut(V)) acts 

- 1
on Ev (and on E,, ) by (g  , x) + g x  = x' where 4= ghl,xhght for all h . 

1.3. Let V' be an I-graded subspace of V E 7 and let x E E, . We say that 

V' is x-stable if x j (Vi t )  c v;,, for all h E H .  

In this case, we may consider the linear maps x; : v;, +v;,, , x i  : Vh,/v;, --
V  h  induced by x j  , and we obtain elements x' = (x;) E E,t and xu = 

(xh)E E,t . We say that x '  , x" are induced by x . 

1.4. Let u E N' and suppose that S, is the set of all pairs ( i ,  a) where i = 

(i,  , i,, . . . , i,) is a sequence of elements of I and a = (a ,  , a, ,  . . . , a,) is a 
sequence of integers 2 0 such that C,: ,,=, a, = v(i)  for all i E I .  

Now let V E 7 and let ( i ,  a) E S, . A Jag of type ( i ,  a) in V is, by 

definition, a sequence $J = (V = V0 2 V' 2 . . .  2 V" = 0) of I-graded 
subspaces of V such that, for any I = 1, 2 ,  . . . , m , the graded vector space 

v'-~/v'is zero in degrees # i, and has dimension a, in degree i, . 
If x E E, , we say that $J is x-stable if V' is x-stable (see 1.3) for all h E H 

andall I = 0 ,  1 ,  . . .  , v n .  
Let q,,be the variety of all flags of type ( i ,  a) in V .  

1.5. In this subsection we assume that an orientation i2 for our graph has been 

chosen. Let qabe the variety of all pairs ( x ,  4) such that x E Ev,n  and 

4 E T,,is x-stable. G, acts on q,,by g :  4 -- g$J where 4 = (V = V
0 
2 

V1 3 . . . 3 V" = 0) and g$ = (V = g ~ O  2 . . . 3 gVm = 0 ) .  Hence G,3 g ~ l  

acts on qaby g :  (x  , 4 )  -- ( g x ,  g 4 ) .  -
We denote by xi ,,: q,,+ E,, the first projection. With these notations, 

we have the following result. 
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Lemma 1.6. (a) q,,is a smooth, irreducible, projective variety of dimension 

and G, acts transitively on it. 

(b) The second projection qa+P;,is a vector bundle with frbres of dimen- 

sion 

(c) 97,is a smooth, irreducible variety of dimension 

(d) xi ,a is a proper morphism. 

(e) n,,, is Gv-equivariant. 

(a) holds since T,,is isomorphic to a product over i E I of usual (partial) 

flag manifolds attached to Vi . (d) follows from (a); (e) is obvious and (c) 

follows from (b) and (a). It remains to prove (b). Let us fix 4 = (V = V0 3 

V1 3 . 2 v'" = 0) in T,,and let Z be the fibre at Q of the second projection 

in (b). The first projection identifies Z with the set of all x E E V l n  such that 

X,(V;,) c v:,, for all h E H and all I ;  this is clearly a linear subspace of 

Ev,n . Its dimension is equal to 

hence to 

1151 

This independent of 4 (this can be also seen from the transitivity of the 

G,- action on 8,a ). The lemma follows. 

1.7. An element f E E, is said to be nilpotent if there exists an N 2 2 such 

that the following condition is satisfied: for any sequence h ,  , h, , .. . , h, in H 

such that hi = h i  , hi = h; , . . . , hk- ,  = h i ,  the composition . . .&, : 

V,;, + Vjl, is zero. 

Lemma 1.8. (a) If x E E, and Q = (V = V0 3 V1 3 . . .  3 v"' = 0) is a 

flag of type ( i ,  a) that is x-stable, then xh(viT1)c v:,, for all h E H and 
1 = 1 , 2 ,  . . . , m . In particular, x is nilpotent. 

(b) Conversely, if x ,E E, is nilpotent, then there exists (i , a)  E S, and a flag 

4 of type ( i ,  a )  such that 4 is x-stable. 
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Assume that we are in the setup of (a). If h is such that h' # i, then 
I

V;; ' = v;, and hence xh (v: ') = xh(Vjl) c vLir; if h is such that h" # il 
vl-l I

then v;;' = vLl1and hence xh(v;7') c h,l  = Vh,,. 
Since for h E H we cannot have simultaneously h' = il and h" = il , (a) is 

proved. 

To prove (b), we may assume that V # 0 and that the result is already proved 

for I-graded vector spaces of dimension strictly smaller than that of V .  

For any k E I and any N 2 1, let Z (k , N) be the set of all sequences h = 

(h, , hZ,. . . , hN) in H such that h',' = k , h: = h::, for i = 1 ,  2 ,  . . . , N - 1 . 
For h E Z ( k ,  N) , we denote by V,(h) the image of the composed map 

Xh,Xh2 . . . Xh, : Vhk Vk .+ 

We denote V, (N)  = ChEZ(,,Vk (h) , a subspace of Vk . We also set 

V,(O) = v, . 
Clearly, we have 

(c) V,(N) = C,,, : ,I)=, xh(Vhl ( N  - 1)) for all N 2 1 . 
Assume that 

(d) Vk( l )= V, for all k E I .  

From this we deduce by induction that 

(e) V,(N) = V,(N - 1) for all k E I and all N 2 1 .   

For N = 1 this is just (d). Hence we may assume that N 2 2 and  

Vk(N- 1) = V,(N - 2) for all k .  Then using twice (c) we deduce that 

Vk(N)= ChEH 1)) ChEH: =: h l l = k ~ h ( V h l ( N - = j u = k  x h ( V h ~ ( N - 2 ) )  Vk(N-  1) 
and (e) follows. From (e) we see that Vk = Vk( l )= Vk(2)= . . . . However, by 

the assumption of (b), for large N , we have V,(N) = 0 for all k . It follows 

that V, = 0 .  This contradiction shows that (d) is false. Thus, there exists 

k E I such that V,(l) # V,. 

Let V' be the I-graded subspace of V defined by V: = Vk( l )  and Vi 
1 
= Vi 

for i # k .  We have xh(vi1)c v:,, for all h E H .  Thus the restriction of 

x gives an element 3 E EvI . It is clear that this element is nilpotent. By the 

induction hypothesis, we can find a flag of some type in V' that is ,?-stable. 

This flag preceded by V itself constitutes a flag in V that is x-stable. Thus, 

(b) is proved. 

2. A CLASS OF PERVERSE SHEAVES ON Ev, 

2.1. In this section, as well as in 33 and 34, we assume that an orientation L? 
for our graph has been chosen. 

We fix a prime number 1 invertible in k . We generally write g ( X )  for the 

bounded derived category of complexes of el-sheaves on an algebraic variety 

X over k .  We shall use the notations of [BBD]; in particular, [dl denotes a 

shift by d degrees, f *  denotes the inverse image functor, J; denotes direct 

image with compact support, D: S ( X )  + g ( X )  denotes the' Verdier duality 

map, and * H ' ( ) denotes perverse cohomology sheaves. 
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-Objects of 9 ( X )  are referred to as complexes. The constant I-adic sheaf 
Q, on any algebraic variety will be denoted 1 . 

A complex L in 9 ( X )  is said to be semisimple if L is isomorphic to the 

direct sum $, ' H i ~ [ - i ]  and if each 'H'L is a semisimple perverse sheaf. 
Assume that we are given an action of a connected algebraic group G on X . 

A semisimple complex L in 9 ( X )  is said to be G-equivariant if each 'H'L 
is a G-equivariant perverse sheaf (see [L 1, 1.91). 

2.2. Let V E Z$ . For each ( i ,  a) E S, , we set Li,,;, = (ni,,)!(l)E 9(Ev, , )  . 
(Here, 1 E 9(qa); see 1.5.) By the decomposition theorem [BBD], Li,,; ,is 

a semisimple complex. 

We denote by 9,,,the set of isomorphism classes of simple perverse sheaves 

L on E,, ,that have the following property: L[d] appears as direct summand 

of L, ,,;, for some ( i ,  a) E S, and some d E Z .  

,),(EvWe denote by gV.,the subcategory of 9 
that are isomorphic'to finite direct sums of complexes of the form ~ [ d ' ]  for 

consisting of all complexes 

various L EgV,,and various integers d' . is semisim- , @,, Any complex in 

ple. From 1.6(e) and [Ll, (1.9.2)] it follows that any complex in @",, is 

Gv-equivariant. 
If in ( i ,  a) E S, we have a, = 0 for some I then by omitting i, from i 

and a, from a ,  we obtain another element ( i t ,  a') E S, , and it is clear from 
the definition that Li , ,; ,= Li, ; ,. Hence in the definition of 9,,,we may 

add the condition that 
(a) ( i ,  a) is such that a, > 0 for all I 

and we obtain the same class of perverse sheaves. Since there are only finitely 

many elements of S, satisfying (a), we see that 
(b) g,,, contains only finitely many objects (up to isomorphism). 

-
2.3. Assume that V ,  are in T and choose an isomorphism r : V E V 

preserving the grading. This induces an isomorphism I' : E, , ,E Ev, ,given by -9(Ev, , )  ,)9 ( E v ,:r[~ ~ ~ ~ x ~ r y ~i where (i)h= for all h E H . Then=r'(x) 

is an equivalence of categories, with inverse I" ,)9 ( E v ,E ;,ait carries Li, ; 

,)to the analogous complex in 9 ( E v ,  

an isomorphism 9,,,E 9 v ,  and an equivalence of categories @,,, 2 @!,, 
(due essentially to the equivariance of the complexes involved). 

2.4. Assume again that V E 5. Let ( i ,  a) E S, be such that for two consecu- 

tive indices I ,  I + 1 we have i, .= i,,, = i . Let (i t ,  a') E S, be obtained from 
(i ,  a) by replacing the two entries i, , i,+l by the single entry i and the two 

entries a , ,  a,,, by the single entry a, + a,+, . We then have 

(a) Li,,;, E~-(E, , , )2 C ~ i j , ~ j ; n [ - 2 f ( ~ ) l  
K  

where K runs over the set of all sequences 1 5 kl < k, < .. .  < kt 5 a, + 
and f ( K )  = C;ll(kt - t ). This follows from the well-known structure of 

, for each ( i ,  a) E S, . Hence it defines 
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the cohomology of the Grassmannian of al+,-planes in (al + al+l)-dimensional 

space. As a consequence, we see that, in the definition of P,,, we may add 

the condition that 

(b) ( i ,  a) is such that no two consecutive entries of i are equal. 

3.1. Assume now that we are given V ,  V' , V" E 7 such that V E Z;: , V' E 

TI, V" E Z;:!,, where v , v' , v" E N' satisfy u = u' + vl' . 
Consider the diagram 

where the notations are as follows. 

E" is the variety of all pairs (x , V) where x E E,,, and V is an x-stable 

I-graded subspace of V such that V E Ttt. 
E' is the variety of all quadruples (x, V , R" , R') where (x  , V) E E" , R" 

is an isomorphism V" 2 V (in 7) and R' is an isomorphism V' E V/ V (in 

71. 
' I ' 

We have p l ( x ,  V , R" , R') = (x' , x") where xjR;, = Rh,,xh: Vj, +Vh,,/Qt, 

and xjRit  = R:,,X;: v:, + Qt, for all h E H ;  

p2(x7 V 7 R" , R') = (x, V) , P,(x, V) = x . 
Note that p, is smooth with connected fibres, p, is a G,, x G,,,-principal 

bundle and p3 is proper. 

.,) 9(E , ,EL'Let and let L" E L3(Evtt %,) be two semisimple complexes; 

assume that L' is ~ , - e ~ u i v a r i a n t  and that L" is Gv..-equivariant. We shall 

associate to L' , L" a complex L = L' * L" in 9 ( E V , , )  by the method of [L2, 

9.51. 
Let L ,  = L' 8 L" E 9(E, , ,,) E,,,x ,, (external tensor product). Let L2 = 

p;(Ll)  ; this is a G,, x G,,,-equivariant semisimple complex on E' , and hence 

there is a well-defined semisimple complex L3 on E" such that p;(L3) E L, . 
We define L = L' * L'' = ,),(E,9E(p,), L, .  

Lemma 3.2. (a) In the setup of 3.1, we assume that L' E @,.. EL"and,, , ,. 

Then we have L' * @,,, EL" 

(b) Assume that (i' , a') E 

.  

SUt(resp. (i" , a") E S,,, ). Let i = i'i" (resp.  

a = a'a") be the sequence formed by the sequence i' (resp. a') followed by the 

sequence i" (resp. a"). Then (i , a) E S, . Hence L i t ,  E @,,, ,, Lit , ,  ;,
E ;, 

; ,* -
,,@v,, , @,,, E,L,,,; are well dejined. We have Lit ,,, Lit, ;, Li,,;,- .  

.'I .I' .I'
We first prove (b). Let i' = (i', , . . . , i;,), 1 = (1, , . . . , i,,,), so that i = 

.I .'I .'I 
, I,,,) . Let L' = Lit,,, L" = Li0(i; , . . . , i,, , i l  , . . . ; ,, L = Li,,;,. ;, ,  

Recall that L' = (n,.,,.)!(l)E O ( E,.,, ) ,  L" = (n,..,,..)!(ljE 9(E,,. , ,),  L =-(ni,,)!E) E 9 ( E v , , )  , where nit ,,, : 3,,, , nit,,,,, : T,, E,,, 

ni,a : 5,- Ev,,, ,,,, ,, ,  

Ev,, , are as in 1.5. We apply the definitions of 3.1 to L' , L" . In 
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a a 

our case we have L l  = (ni,,,, x n i t ,  , , ) ( l )  where ni,, a, x nit ,a, : 8,x 5$,,+a, a,, 

Ev/ ,nx E v l l , ~  

Let p : qa-+ E' be the morphism defined by p ( x ,  $) = ( x ,  V) where 

$ = (V = v0> v13 . . . 3 Vm'+m" = 0) and V = Vm 
I 

. Let L3 = p!(l) E 

L~(E"). As in 1.6(d), we see that p is a proper morphism; using also 1.6(c) 

and the decomposition theorem [BBD], we see that L3 is a semisimple complex 

on E" . It is clear that p;(L3) = p;(L1) (notations of 3.1). It is also clear that 

p3 p = ni,a ; hence 

Thus, (b) is verified. 

Now (a) follows immediately from (b). 

3.3. We want to prove an associativity property of the operation * . Assume 

that we are given v"), v", , Y(2))v21,v1, v 2 ,v3 in Yi123) ,  T112r ? ( I )  33 

, Y(,)respectively where v(12) = v(1) + v(2) , v(23) = v(2) + v(3) and 

~ ( 1 2 3 )= v(1) + v ( 2 )  + v ( 3 ) .  Let Lf E LZ?~,,,, f = 1 ,  2 ,  3 .  Then L1 * L2 E 

~ 9 ~ , , , , ,L 2 * L 3  ~ & ? ~ 2 3 , , ;  Ehence L 1  * ( L 2 * L 3 )  ~ & ? ~ 1 2 3 , ,  and ( L 1 * L 2 ) * L 3  

&?v123,R are well defined (see 3.2(a)). 

Lemma 3.4. L~* (L' * L ~ )  ( L I  * L ~ )* L~ in &?v123. 

Consider the diagram analogous to that in 3.1 (a): 

where the notation is as follows. 

Y is the variety of all triples (x12', V3,  V2)) where x12)E EV123.,V3, V2) 
,- -

are ~ ' ~ ~ - s t a b l e  such that V3 ,  is ~ S O -I-graded subspaces of v~~~ V3 c v ~ ~ ,  

morphic to V3 , and v~~is isomorphic to v~~. 
X is the variety of all sequences ( x ' ~ ~ ,  R 1 ,  R 2 ,  R3) where V3,  v ~ ~ ,  

( x ' ~ ~ ,  E Y ,  R3 is an isomorphism V3 E V3,  R2 is an isomorphism V3, v ~ ~ )  

V2 E v ~ ~ / v ~, and R '  is an isomorphism V' E v ~ ~ ~ / v ~ ~. 
We have p1(x '23,  V3 , VZ3,R '  , R 2 ,  R3) = ( x l ,  x 2 ,  x3)  where xi2)R{, = 

R;,.X{ forall ~ E Hand f = 1 , 2 ,  3 ;   

p2(x123, V3,  VZ3, R 1 ,  R 2 ,  R3) = (x121, V3, V2)) ;  
123 3 23 123

p3(x , v  , v  ) = x  . 
Let L l  = L ' 8L28L3 (a semisimple complex in B(E,I ,,x Ev2,,x E,, ,,). 

As in 3.1, there is a well-defined semisimple complex L3 E 9 ( Y )  such that 

p ; ~ ,= p ; ~ ,. We set L ,)9(EV123,E(p3),L2= .  
It is sufficient to show that 
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These isomorphisms are established by using the standard commutation rela- 
tion between inverse image and direct image with compact support in cartesian 
diagrams (base change). We leave the details to the reader. 

3.5. As a consequence of 3.4, it makes sense to consider L1 * L2 * . . . * Lm E 

E @bv~ , W' E TI ( I = ,, gV,,for any L 
1 

1, . . . , m ) where V E q satisfies 

v = v 
1 + v 

2 + . . . + vm. This may be defined either directly, as in the proof of 
3.4, or by applying repeatedly the definition in 3.1 (for two factors) with some 
choice of brackets; the result is then independent of the choice of brackets. 

3.6. Let i E I and let a E N .  Let W E '7 be such that dim W, = a and 
W, = 0 for all j # i . Then E,,, = ;,It is clear that L i , a  0 .  = 1 E g ( W ,  R )  . 
(Here we regard i , a as sequences with one term each.) It follows that 

3.7. Let ( i ,  a) E S,, . Let v 
1 

be such that vl(i,) = a, and vl(i) = 0 for i # i, 

( i = 1, . . . , m ) where m is the number of terms in i . Let W' E $I and let 

L
1 

= ~ E D , I , ,  for 1 = 1 ,  . . . , m .  

Assume that m 2 1 . Let V" E and let (it', all) E S,,-,,I be obtained 
from ( i ,  a) by dropping the first terms il , a ,  . From 3.2(b) we see that 

Applying (a) repeatedly we obtain 

Note that L' E Pw1,,, see 3.6. 

,)g ( E v ,+ ,)g ( E , ,:3.8. The Verdier duality map D satisfies 

-
where d (i, a) = dim%, ,is equal to 

(see 1.6(c)). It follows that D preserves the subcategory @v,, and that it 
defines a permutation of the set Pv,,. 

,,@v,EL",gV,,, If L' E are as in 3.2(a), we have 

where m is the dimension of any fibre of p l  minus the dimension of any fibre 
of p2 (notation of 3.1); in other words, we have 
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Note also that 

D(L[dl) = D(L)[-dl 

@, Efor any L and any integer d . 

4. RESTRICTION 

4.1. Assume now that we are given V E and an I-graded subspace W of 

Let T = V/W. Then T E 7 where v = .r + co.V with W E T, . 
Let E(W) be the subspace of E,,* consisting of all x = (x,) such that W 

is x-stable. Such x induces elements x' E E,, ,and x" E E,,* (see 1.3). 

We denote by i:  E(W) - E,,, the canonical inclusion and by p :  E(W) -, 

E,,, x E,, ,the map defined by p(x)  = (x' , x") where x' , xu are as above. 

is said to belong to gT,,,, 

exist L', , . . . , L: in @,,* and L;, . . . , L: in such that we have L Z

$:=, L: 8 L: (external tensor product) in 9 ( E T ,  x E, , *) . 

A complex L E L3(ET,, x E,,,) if there 

,) 9(E, ,ELFor any , we set 

res,,,L = P! (~*L)  E,,,).E 9 ( E T , *x 

*,  then res,, ,L belongs to @,, ELIf(a)4.2.Proposition ,, @,, ,.  
(b) If (i, a) E S, , then 

" $ L,, ,I , l)]  ,,resT 
a' , a" 

where the summation is over the pairs of sequences a' , a'' such that (i , a') E S T ,  

( i ,  a") E S,  and a' +a" = a ;  we have 

= = ili, h" 
I I' 1 I'

~ ( a ' ,a'') #{h E ~ h '  = il)allal + al.al . 
1'51 I</ '  : il, = i l  

It is clear that (b) implies (a). Hence it is enough to prove (b). The proof 

will be given in 4.8. -
4.3. Let n,,,: T,,-+ EV,* be as in 1.5. The inverse image of E(W) under 

n,,,is denoted E(w) ; let 2 : E(w)-E(W) be the restriction n,,, . Consider 

the composition pji : E(w)-ET,,x EW, . We have clearly 

(a) P!(~*(L,,,;,))= (P')!('). 

We now define, for any a', a'' as in 4.2(b), some subvarieties E (w ,  a ' ,  a") of 

E(w) as follows. 

E (w ,  a ' ,  a'') is the variety of all ( x ,  4) E E(w) where 4 = (V = V
0 

3 

V' 3 . . . 3 Vm = 0) is such that for any 1 , (v'-' n w)/(v'n W) has dimension 

a:' in degree il (and, necessarily, dimension 0 in degrees # il ); here m is the 

number of terms in i . 
It is clear that the E (w ,  a' , a'') form a partition of E(w) into locally closed 

subvarieties. 

L,,,;,  8 L, ,,/I ;,[-2M(s' ;, 
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-
For a' , a" as above , the morphisms n,, : 9, -+ ET,,and n,,,.. : P;,..-+ 

Ew ,,can be defined just as in 1.5 (with V replaced by T , W ). Moreover, we 

have a commutative diagram 

f 'E ( w ,  a' , a") - Rw) 

where f is the inclusion and f is the morphism defined as follows. If 
(X , 4) E E ( w ,  a ' ,  a'') is as above, then f (x, 4) = ((x' , #'), ( x u ,  4")) where 
( x ' ,x") = p(x)  , 4'' is given by the intersections of the subspaces in 4 with 
W and 4' is given by the images of the subspaces in 4 under the canonical 
projection V -T . 
Lemma 4.4. With the notations in 4.3, f is a (locally trivial) vector bundle with 

fibres of dimension ~ ( a '  , a )  (see 4.2(b)). -
We fin (x' , 4') E <,, and ( x u ,  4") E T,,,, where 4' = (T = To 3 T1 3 

. . 3 Tm = 0) , 4" = (W = W0 3 W1 1 . . . 3 Wm = 0) . Let r be the fibre 
of f at ((x' , $I), ( x u ,  4")) .  Let us identify T with a (graded) complement 
of W in V .  

Now, giving a graded subspace V' of V such that V' n W = W' and such 

that the image of V' under the canonical projection V - T is T' is the 

same as giving a graded linear map z :  T -+ W . (To z, corresponds 

the subspace V' of V consisting of all vectors v' + v'' E T $ W such that 

v' E T' and zl(vf)= v" modulo W' .) The condition that the subspace V' 

corresponding to zl (as above) is contained in the subspace v'-I corresponding 

to z : T - / ' (as above, with 1 replaced by 1 - 1 ) is that 

(a) for any v' E T' , we have ( v ' )  = z ( v )  as elements of W/W" 
( 2 5 1 5 m ) .  

We then have automatically that v"/v' is zero in degrees # i, and has 
dimension al in degree il . 

Now, giving an element x E E,,, such that p (x)  = (x' , x") is the same as 
giving an element 

(b) y = (yh)E ehEH 0 whenever h $ R .Hom(Th,, Wh") such that yh = 

(To y corresponds x such that xh (v") = x;(v") and xh(vf)  = x;(vf) + 
yh(vl) for all h E H ,  v' E Th,, V" E Wh,.) 

The condition that such x satisfies xh(V;.) c v;.. (where V' corresponds 
to zr as above) is that 

I ' I  1 1
(c) zl ,h , , ~ h- xhzl,h,  - yh: Th, -+ Wh,, /Wh" is zero for any h E H , where 

z ,  is the i-component of zl . (This equality has a meaning since x; (v') E Ti.. 

and x i  induces a linear map w,,/w$ -wh../W;.. , denoted again x; ) 
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We thus see that r can be identified with the k-vector space T' consisting 

of all (I, , . . . , z, ; y) where the graded linear maps z, : T' -W/W' ( 1 < 1 5 
m ) and y as in (b) are subject to (a) and (c). We have a natural short exact 

sequence 0 -+ r',- r' -+ ri - 0 where r', consists of all y as in (b) such 

that Y h ( ~ L . )  c w;., for all h , 1 and I?, consists of all ( z  , . . . , z,) where 

z, : T' -W/W' are graded linear maps satisfying (a). Clearly, 

dim r; = x d i m ( T i ~' /Ti,)  dim(w;;'/w:,,) ; 
' ' < I ;  he,  

hence, using the definition of a' ,  a", we have 

I /I

diml?, = E N { h  E ~ l h '= i l , , h" = il}al.al. 

r'g 

On the other hand, 

dim r; = dim(Til-' /T:) dim(^:-'/^:) ; 
' < I 1  ; L E I  

hence 

We have dim r' = dim r',+ dim ri , a") .= ~ ( a '   

The local triviality statement is left to the reader.  

Lemma 4.5. I n  the setup of 4.4, we have 

(plif ) ! ( I )  " Li,,/ @ L,,,.. ;,[-2M(a1, a")]. 

This follows from 4.4 and the commutative diagram in 4.3. 

4.6. We can find a sequence (Z,) of closed subsets of &(w) ( j E Z )  with 

the following properties: ZJ-, c ZJ for all j , 2, = &(w) for large j , 2, is 

empty for j < 0 ,  and each difference Z, - Z,-, is a union of subvarieties of 

the form E ( W ,  a',  a") (see 4.3), which are both open and closed in Z, -ZJ-, . 
If /3, is the inclusion Z, c Z(W)and y, is the inclusion Z,-Z,-I c E ( w ) ,  

then we have a canonical distinguished triangle in 9 (E , ,  ,x E, ,), :  

It gives rise to a long exact sequence of perverse cohomomology sheaves 

+ 

S P
H

3
((P%)!(Y,)!Y;(~))p ~ 3 ( ( ~ ~ ) ! ( ~ j ) ! / 3 1 * ( l ) )-+ -

Note that 

(b) 
(Pli)l(~,)I/3J* for large j (see 4.3(a)), and is zero for j < 0.(1) is p,(i* (L,,,)) 
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Lemma 4.7. (a) For each integer j, the maps 6 in 4.6(a) are zero. 
(b) For each integer j , the complex (pir), (fij)!q (1) in B(E,,  ,x E,, .) is 

semisimple; it is isomorphic to the direct sum 

;,Li,al@ 8 Li,all;,[-2M(af, a")] 
a' , a" 

where the summation is over the pairs of sequences a' ,  a" as in 4.2 with 
E ( W ,  a f , a " )  c Z , .  

The proof will go along the lines of [Ll, 3.71. Assuming that (a) and the 
first assertion of (b) are proved, we prove the second assertion of (b) as follows. 
Since both complexes in question are semisimple, it is enough to prove that they 
have the same 'H' for any s . From 4.5 we see that 

(P%)!(Y~)!Y;(~) ;,Li,al@ 
a' , a'' 

where the summation is over the pairs of sequences a ' ,  a'' as in 4.2 with 
Z ( W ,  a' , a") c Zj  - Z,-, . In particular, (pii), ( y,)!y; (1) is semisimple. Using 

(a), we see that 4.6(a) decomposes into short'exact sequences of semisimple 
perverse sheaves. Hence, 'HS((pii)!(P,)!& ( I ) )  is isomorphic to 

Using the last formula, together with (c) and an induction on j we obtain the 
desired equality for 'HS . (The case where j < 0 is trivial, by 4.6(b).) 

It remains to prove (a) and the first assertion of (b). By general principles 
[BBD, $61, it is enough to prove them in the case where the ground field is 
an algebraic closure of the finite field Fq with q elements. In this case, we 
can realize 4.6(a) in the category of mixed perverse sheaves over an Fq-form 

(c) @ Li ,a l l;,[-2M(af, a")] 

of E,,, x E, ,, . The isomorphism (c) remains valid in this category (with 

the same proof) except that after the shift [-2M(a1, a'')] one should add the 
Tate twist ( - ~ ( a '  , a")) . ;,,..,L,@,;,.,L,By Deligne's theorem [Dl is a pure 

complex of weight zero; after applying to it the shift and the twist just described, 
it remains pure of weight zero (see [BBD, 6.1.41). Hence, by (c), 

( 4  (pir),(y,)!y;(l) is a pure complex of weight zero. 

It follows that 'HS((pir), (y,)! y j  (1)) is pure of weight s . 
We now show by induction on j that 'HS((pir), (h)!q(1)) is a pure complex 

of weight s . This is obvious for j < 0 ,  by 4.6(b).' If we assume that this is true 
for j - 1, the statement for j follows from 4.6(a), using (d), the statement for 
j - 1 , and the following fact: if L,  -+ L2 -+ L3 is an exact sequence of mixed 
perverse sheaves with L,  , L3 pure of weight s , then L2 is also pure of weight 
J .  

Now, using [BBD, 5.4.41, it follows that (p i r ) , (P , ) ,q ( l )  is pure of weight 

zero. Using the decomposition theorem [BBD, 5.4.5, 5.3.81 it follows that 
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(pir)!(P,)!Pj(l) is semisimple. The vanishing of 6 in 4.6(a) follows from the 

fact that 6 is a morphism between two perverse sheaves of different weights. 

This completes the proof of the lemma. 

4.8. We now note that (in view of 4.6(b)), 4.2(a) is a special case of 4.7(b) (for 

large j ). This completes the proof of 4.2. 

4.9. We want to prove an associativity property of the operation res in 4.1. 

Assume that we are given V E T and two I-graded subspaces W ,  W' of V 

such that W c W' . We introduce some notation. 

Consider the commutative diagram 

I3 p3 

Ev/w',n x Ew1,n -4 -Ev/w/, n Ewljw, n Ew ,n 

where the notation is as follows. 

El is the subspace of Ev ,n  consisting of all x such that W is x-stable. 

E2 is the subspace of EV,* consisting of all x such that W' is x-stable. 

E3 is the subspace of EV,, consisting of all x such that W and W' are 

x-stable. 

E, is the variety of all pairs (y ,y') in Evlw,, x Ew , such that W'/W is 

y-stable. 

E, is the variety of all pairs ( z  , z') in EV/,, x Ew,, n  such that W is 

2'-stable. 

i, , . . . , i6 are the natural inclusions and p, , . . . ,p6 are the obvious projec- 

tions. 

We define a functor 

redv/w/, w//w: s ( E v / w , n  x E w , d  +a ( E v / w / , n  Ew~/w.nx Ew,n) 

as the composition (p6)! i: . 
We define a functor 

as the composition (p3),if . 
From the definition we have 
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,) ,B(Ev/wlEfor any L3 ,  9 ( E w I ,,) EL, (external tensor products). 

Proposition 4.10. Let L E 9(E,,,) . In  the setup of 4.9, we have 

We must show that (with notations of 4.9) we have (p6)!i:(pl)!i;(L) E 

(p3)! i; (p,)! ii (L) . From the diagram in 4.9 we see that in the sequence 

any two consecutive complexes are isomorphic. The proposition is proved. 

5.1. In this section we assume that k is an algebraic closure of a finite field 
Fq . We fix a nontrivial character Fq - D;. This defines an Artin-Schreier 

local system of rank 1 on k ; its inverse image under any morphism T :  X - k 

of algebraic varieties is a local system YTof rank 1 on X . 

5.2. Assume given two orientations R , R' c H for our graph. For any V E 7- xhtr(xhx3;) where the sum is taken we define ,,,, T :  E,,  k by T(x)  = 

over all h E R - (anR') . (The last trace is that of an endomorphism of Vh" .) 
The function T is G,-invariant. Hence the local system YTon E,,,,,, is 

well defined (see 5.1) and G,-equivariant. 
We have two surjective linear maps 

defined by 6(x)  = y ,6 ' (x)  = y' where yh = xh for h E R ,  yh = 0 for 

h $ R ,  y ; = x h  for h e a l ,  y;=O for h $ R' .  
Next, we consider the functor F :  g ( E , ,  ,) + E,, defined by F ( L )  =,I 

6:(6* (L) @ PT)[D] where D = Chdim Vht dim Vhl, (sum over all h E R -

( R  n $2')). This is a special case of the Fourier-Deligne transform from the 
derived category on a vector bundle to that on the dual vector bundle. (The 

vector bundles in question are E,,, ,,,,, +E+ E ,,,,, 

may be used to identify one vector bundle with the dual of the other.) 

5.3. We now fix V E q , V' E 25, and V" E TI/such that v = v' + v". 

and E,,,I I T, 

Assume that L' E B(E,, ,,) is a semisimple Gv1-equivariant complex and 

that B ( E v t 1,,) EL" is a semisimple Gvl1-equivariant complex. Then L' *  
L" E B(E,,  ,) is well defined; hence F ( L 1  * L") E O(E,, , / )  is well defined. 

On the other hand, F ( L 1 )  (resp. F ( L U )  ) is a semisimple, G,,-equivariant 
(resp. G,,, -equivariant) complex in O(Ev1  , ,,) (resp. B(E,,I , ,,) ), by general 

properties of the Fourier-Deligne transform. Hence F ( L ' )  *F(L")  E B ( E ,  , 
is well defined. We have the following result. 
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Theorem 5.4. In the setup of 5.3, we have 

in L3(E, , ) where 

We consider the commutative diagram 

in which the notations are as follows. 

Xu = E,, x E,o . 
X ,  is the variety of all pairs (x , V )  where x E E,,, and V is an x-stable 

I-graded subspace of V such that V E TI,. 
Xb is the variety of all quadruples ( x ,  V ,R", R') where (x , V )E X ,  , R" 

is an isomorphism V" E V (in Y ), and R' is an isomorphism V' E V / V  (in 

Y 

Xd = EV,R
Xm = E,, , x E,,, , 

Xo is the variety of all pairs (y , V )  where y E E,, and V is a y-stable 

I-graded subspace of V such that V E TI,. 
X ,  is the variety of all quadruples (y , V , R" , R') where (y , V )E Xo , R 

is an isomorphism V" E V (in Y ), and R' is an isomorphism V' E V / V  (in 

Y ) *  
XP =E,,,1. 

X g  = Ev ,nun1. 
X ,  is the variety of all triples ( z ,  V )  where z E X ,  , V is an I-graded 

subsiace of V such that V E T I , ,and V is x-stabe where x = 6 ( z )  
(see 5.2). 
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Xe is the variety of all quadruples ( z, V ,R" ,R') where ( z, V) E X I ,  R" 

is an isomorphism V" % V (in 7), and R' is an isomorphism V' % V / V  (in 

7-1. 
Xi is the variety of all pairs ( z ,  V )  where z E Xg and V is a z-stable 

I-graded subspace of V such that V E . 
Xh is the variety of all sequences ( z,V ,R", R') in Xe such that ( z,V )E 

xi . 
X .

J 
= E,, ,nun, x 

E ~ l l,RuR1 ' 

Xk is the variety of all sequences ( x ' ,  x " ,  y , V ,R" , R') such that 

( y, v , R" ,R') E Xn , (x',x") E Xa , R ; ! I x ;  = yhR,, : Vh!!/Vht!, andv;I 

yhRiI= Rijlx;:v;,+ %/,,,for all h E R nR' . 
XI is the variety of all sequences (s' ,s" ,y , V )  where ( y, V )E Xo and 

The maps uba, ubc , uCd,unm,u,, , uOpare defined as in 3.1. 

The maps ugd,ugpare 6 and 6' of 5.2; the maps uja, ujm are of the form 

6 x 6 and 6' x 6 ' .  

The map ueb takes ( z ,  V ,  R", R') to ( S ( z ) ,  V ,  R", R ' ) .  
The map ufc  takes ( z ,  V )  to ( 6 ( z ) ,V ). 
The map ue takes ( z, V ,R" ,R') to ( z, V ). 
The map u f g  is the first projection. 

The maps uhe, ui are the obvious imbeddings. 

The map uhi takes ( z, V ,R" , R') to ( z ,  V )  . 
The map ukj takes (x' ,x u ,  y , V , R" ,R') to (z' , z") where R> Z; = 

I /  I1
y9R,. ;v;.+ V,.. I%.., y h ~ ; .= Rho zh : v;.+ for all h E R' , and z, = 

x, , zh = x; for all h E R . 
The map ukl takes (x ' ,  x", y ,  V ,  R", R') to (s', s", y ,  V )  where RLtlx;= 

/ 6,, = 
I1 ' I

s ~ R ; ,: v;,+Vhu ,and S ~ R : ,  Rhl,xh: v/,'!-+ Vhl,for all h E Q-(RnR')  . 
The map uhk takes ( z ,  V ,  R",  R') to ( x ' ,  x " ,  y ,  V ,  R",  R') where y = 

S ' ( Z )  and (x' ,x") = ubaueb(z,V ,R" ,R') . 
The map uil takes ( z ,  V )  to (s ' ,  s", y , V )  where y = 6 ' (z )  and s' ,  s" 

are induced by x = S ( z ). 
The map ukn takes ( x ' ,  x " ,  y ,  V ,  R",  R') to ( y ,  V ,  R",  R ' ) .  

The map ul, takes (s' ,s" ,y , V )  to ( y, V ). 
Recall that in 5.2 we have defined a function T :  X, -. k ;  the same con- 

struction applied to the two factors of X, gives two analogous functions on X, 

whose sum is again denoted T :  X, + k .  It is easy to check that the composi- 

tions Tu f,ue uhe, TUf g ~ ,uhi, Tukjuhkcoincide as functions Xh -+ k and 
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that there is a unique function X,, -+ k whose composition with uil (resp. with 

ukl) gives the function X, -+ k (resp. Xk --,k )  just considered. 

Hence we can define local systems of rank 1 on 

that are 27 on X, , X, and correspond to each other under inverse image by 

We shall denote each of these local systems by 2. 
Let La = L' 8 L" E B ( X a )  (external tensor product). Let Lb = uiaLa E 

B(Xb); let LC E B(Xc)  be the unique semisimple complex such that uicLc = 

Lb and let L, = (uCd)!LcE 9 ( X d ) .  Let L, = uidLd E 9 ( X g )  and let 

Lp = (Ugp)!(Lg8 9)E B ( X p ). 
By definition, we have F(L '*L")  = Lp[D], where D = Chu(hl)u(h") (sum 

over all h E Q - (SZ n R')) . 
Now let L, = UJ,L~E 9 ( X , )  and Lm = (ujm)!(Lj8 2 )E 9 ( X m ) .  This 

is a semisimple, G,, x G,,,-equivariant complex. Let L, = u;,~, E B (X , ) ,  

and let Lo E 9 ( X o )  be the unique semisimple complex such that U;,L~= L, . 
Let L; = (uyp)!L0E 8 ( X p ) .  

By definition, we have 

where D' = Chu'(h')v1(h''), D" = Chu"(h')u"(h") (sum over all h E Q -

(nn n')). 
Hence it suffices to prove that 

Let Le = U;,L, E 9 ( X e ), L = u ; ~ L ~E 9 ( X f )  . Then L is a semisimple 

complex (since LC is semisimple and ufc is smooth with connected fibres) and 

Le = u;,~, . Moreover, ( U  /,)! L = L, (since the diagram u , ucd, uf,, u,, 

is cartesian). Hence we may go from La to Lp by the shorter chain Le = 

(ubaueb)*La,Le = u : ~ L ~(Lf  semisimple), Lp = (ugPuf,)!(Lf ~ 2 ) .  

Similarly, we may go from La to L; by the shorter chain Lk = (ujauk,)*LaE 

B ( X k ), Lk = u;,L,, ( L,, E B(x,)semisimple), L; = (u,ulo)! (L,,@ 3). 
Let L, = U;,L, E 9 ( X h ) ,  L, = U:,,L[ E B ( X i ) .  Note that u,,, is a vector 

bundle with fibres of dimension Do = C, v'(h')u"(hl') (sum over all h E 

n - (nn 0 ' ) ) .  

It follows that L, is semisimple (recall that Ll is semisimple) and that 

(uil)! L, = Ll[-2Do] . Hence we have ( U ~ ~ U ~ ~ U , , ) ! ( L ~  = L;[ -~D~]@ 9) . We 

have the identity C = D -D' -D" - 20,.  Hence it is enough to prove that 
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We have U;,L~ = L, and it follows that we may go from L, to L; by the 

chain L, = (uj,ukjuhk)*L, ( Li E 9 ( X i )  semisimple), E 9 ( X h ), Lh = u ; ~ L ~  

~ b l - 2 ~ ~ 1  @ 9 ) .= (U,~U(,U~()! (L,  
We now show that u>L, is semisimple. This is not obvious since uif is 

not smooth; however, we have u;[L, = (u,ui,)*~, with LC semisimple and 

u ,a vector bundle. Our assertion follows. 

Now both u>L, and Li are semisimple and they have the same inverse 

image L, under uhi (a smooth morphism with connected fibres). It follows 

that u:,L, E Li . Since uopulouil= ugPufgui, we see that L;[-~D,] = 

8 2 ) ) . 
We now see that ( a l )  would be a consequence of the following statement: 
(c) L, B 2 and (u~,)~u:,L, B 2 have the same image under (ugPufg), . 

An equivalent statement is the following one: 

( c l )  if u' denotes the inclusion of X, - Xi into XI (as an open subset), 

then (U,,U,~U'), (u" (L, B 9 )  = 0 . 
(We use the distinguished triangle associated with the partition X, = Xi u 

(X,  - Xi) .) 
We now consider the commutative diagram 

where the notations are as follows. 
Yc is the variety of all triples (s' , s" , V) where V is an I-graded subspace 

of V such that V E y,,, s' = (s;) E $hen-lnun,l Hom(V,. / Vh., V,.. / V,..) , 

S" = E $hER-(RuR~j  Hom(bt  , bll). 
Y, is the variety of all quadruples (s' , s" ,y , V) where (s' , s' , V) E Yc 

and y E Yp satisfies y,(V,.) c V,.. for all h E R nR' . 
Yb is the variety of all sequences (s' , s" , V , R" , R') where (s' , s" , V) E Yc 

and R" , R' are as in the definition of Xb . 
The map wbc takes (s', s" ,  V ,  R", R') to (s t ,  s" ,  V ) .  

The map w takes (s' , s" ,y , V) to (s t ,  s" , V) .
-f"

The map w is the inclusion (as an open subset). 
The map ub takes ( x  , V , R" , R') to (s' , s" , V, R" , R') where s' , s" are 

induced by x . 
The map uc takes ( x  , V) to (s' , s" , V) where s' , s" are induced by x . 
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The map u takes ( z  , V) to (s' , s" ,y , V) where y = ~ ' ( z )  and s' , s" 

are induced by x = S ( z ) .  
The map u'' is the restriction of uf . 
The map w" takes (s' , s" ,y , V) to y . 
The map v' is such that v'u, = uba. 
Let Mb = v'*L, E 9 ( Y b ); this is a semisimple complex that is G,, x G,,,-

equivariant, and hence there is a well-defined semisimple complex Mc E g ( Y c )  

such that w,',MC = Mb. Let Mf = w k M c  E B ( Y f )  . It is clear that uiMb = 

Lb , U: MC= LC, u;Mf = L (note that ub , uc , u are vector bundles). Hence 

we have U " L ~  = u'*u;M~ = u'' * wl*Mf .  
The statement ( c l )  can now be rewritten in terms of Mf instead of Lf : 

(d) (u,, ufgu1) ( u *  w *  M 8 9)= 0 . 
' I  I I'

or equivalently (using ugpu fgu' = w w u ): 

This would be a consequence of the following statement: 

(e) U~' (U' '*W'*M~ 0 .8 9 )  = 

We have u l ' ( u " * w " ~ ~  = 8 ( u j l p )  ; hence it suffices to prove 8 P )  W " M ~  

that 
(f) u : 'P  = 0 in B(Yf  - X,) . 
Let us fix a point (s' , s" ,y , V) E Yf -Xi and let l- be the fibre of w' over 

this point. Let ? : l-- k be the restriction of Tufg . 
By base change, it is enough to prove that the cohomology with compact 

support of I- with coefficients in 2Z)ris zero. Note that 9lr is the local 

system defined as in 5.1 in terms of the function F. Hence, by a known 
property of Artin-Schreier coverings, it would be enough to verify the following 

statement: one can identify I- with kN for some N so that ? is given by a 

nonconstant affine linear form on kN . 
Let us choose an I-graded subspace W of V that is complementary to 

V .  We have an isomorphism l- E $hEn-(nnntl Hom(Wh,, b , , )  given by 

( z ,  V) + Z' = (z;) where z; are restrictions of x = S(z) . Let y i :  ~ I -' WhlI 

be the composition of the imbedding J$, -Vh" with YE: Vh" -Vh, and with 
the projection Vh, + Wh,. A simple computation shows that, in the coordi- -
nates (zh) , the function T is given by the expression zhEn-mnn,ltr(ziy i )  + 
constant . (The last trace is that of an endomorphism of .) We must show % , I  

that the linear part of the last expression is not identically zero. 
Assume that it is identically zero. (Recall that y is fixed.) Then we have 

y i= 0 for all h E R - ( R  nR') . In other words, we have y,(V,,,) c Vh, for 

all h E Q - (Q n Q') . Hence y h ( b , )  c b,, for all h E Q - (Q n a ' ) .  The 

same inclusion holds for h E R n R' by the definition of Yf . It follows that 

(s' , s" ,y , V) E Xi , a contradiction. The theorem is proved. 
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5.5. Let 

(see 3.8). 

The integer C in 5.4 can be expressed as follows: 

This is verified by an easy computation. 

Corollary 5.6. (a) For any ( i ,  a) E S, we have 

for some integer d . 
,,,9,F defines a bijection 9, , ,g (b) .  

,, @,, F defines an equivalence of categories @', ,g (c) 

Using 5.4 and 3.7(a) we see that it is enough to prove (a) in the special case 

where both i ,  a have a single term, so that V is concentrated in a single degree. 

In this case, the maps 6 ,  6' in 5.2(a) are the identity, and T of 5.2 is zero, 

so that TTof 5.2 is 1 . Hence in this case, F is the identity functor and (a) 

follows (see 3.6) with d = 0 . 

.  

,,9,, 

F takes irreducible perverse sheaves to irreducible perverse sheaves (a gen- 

eral property of the Fourier-Deligne transform). Hence 9 defines a map 

9,,, -' 9,,,,. This map is injective by general properties of the Fourier- 

Now from (a) it follows that F ( L )  E for any L E 9,,,, since 

Deligne transform. Hence g 9 , ,  ,5 /19,,,, 
obtain the reverse inequality; hence we have an equality and our injective map 

must be a bijection. (It is a map between finite sets, see 2.2(b).) Thus, (b) is 

proved. Clearly, (c) follows from (b). 

6.1. In this section we shall assume that we are given an orientation R for our 

graph and a vertex i E I .  

. Reversing the roles of R , R1, we 

Given V E Y$ and an integer r 2 0 ,  we define E,, 

x E E,,, 

to be the set of all , ,, 

such that the sum (over all h E R such that h'l = i )  of the images 

of xh: Vht -' Vi has codimension r in Vi . form a partition of , ,, E,,The 

E,, ,such that, for any r 2 0 , the union E, ,,, >, = UrtLrE,, ,,,., is closed in 

E,,,. 

6.2. If L E 9,,,, we denote by a (L)  the support of L (a closed, irreducible, 

G,-invariant subvariety of E,, ,). Let t(L) be the unique integer 2 0 such that 

a ( L )  = E,,,,>t(L) and a ( L )  @ E,,,,>t(L)+1 . Then ao(L) = a(L)  nE,,*,t(L) 
is an open dense G,-invariant  subset of a (L)  . 

We have t(L) 5 v(i)  . 
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6.3. For any N' = r and v , ( j )  = 0 for all r 2 0 ,  let v , ~  be defined by v,(i)  
j E I ,  j # i . W e  denote by V r  a vector space in ?,. W e  denote by 1, the 

complex 1 on E,, ,, = ( 0 ). 

Lemma 6.4. Assume that i is a sink for R ,  that is , 

Wefuc a number t such that 0 5 t 5 v ( i ). Let V E and let W be an I-
graded subspace of V such that W E ?+,. Let d = t ( v ( i )- t ). Let L E Y,,, 

and let K E Pw,,. 
(a)Let L E Y,,,be such that t ( L )  = t . Then resvIw,, L E @, ,,is a direct 

sum offinitely many summands of the form K'[f] for various K' E PW,,and 

various f' E Z ; exactly one of these summands satisfies t ( ~ ' )  0 and f' = d ;= 

the others satisfy t ( ~ ' )  > 0 .  
( b )Let K E PW,,be such that t ( K )  @,,, EK*1,0 .  Then = is a direct 

sum ofjinitely many summands of the form ~ " [ f " ]  andfor various L" E Y,, 

various f" E Z ;exactly one of these summands satisfies t ( ~ " )  = t and f" = d ; 
the others satisfy t ( ~ " )  > t . 

(c)  Consider the sets { L  E Pv,,lt(L) = t )  and { K  E Pw,nl t (K)  = 0 ) .  
Associate to L in the first set the K in the second set such that some shift of K 
is a summand of res,,, , L ;associate to K in the second set the L in the first 

set such that some shift of L is a summand of 1, * K . These give two bijections 
between our two sets, inverse to each other. 

W e  first prove (b) .  W e  consider the commutative diagram 

where the notations are as follows. 
The first row is as in 3.1 (a)  (with V" = W , V' = V / W  ; note that Evlw, ,= 

0 ). W e  have a' = p y l ( a ( ~ ) )  = , X = p3(a"), a; = p;l ( q , ( ~ ) ), a" p2(a1)  , 
0; = p2(a;), Xo = X n E,, ,,,; the maps in the second and third row are in- 
duced by those in the first row and the vertical maps are the obvious inclusions. 
Let K2 E 9 ( ~ ' ) ,  be semisimple complexes such that p;(K)  ZK3 E ~ ( E ' I )  

@,, Z K2 . By definition, 1, * K = (p3)!K3Ep;(K,) ,. W e  have K = f;K4 for 

a well-defined irreducible perverse Gw-equivariant complex K4 E 9 ( a ( ~ ) ). 
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Hence there exist well-defined semisimple complexes K5 E L3(01) and K, E 

L3(a1') such that pi)*(^,) E pi)*(^,) E K5 . Let K7 = ( p i ) , ~ 6E L 3 ( X ). 
Now $K, and J;"K, are semisimple since fl , f" are closed imbeddings. It 

follows' that $K, '= K,  and $'K, = K,  . Clearly, (p3) ,K3= g,K, . In particu- 

lar, 

(d) the support of (p,),K, is contained in X .  
Let K8 = j*K4 E L3(ao) .  This is an irreducible G,-equivariant complex 

since j is the inclusion of an open dense set. Hence there exist well-defined 

semisimple complexes K9 E L3(aA) and K l o  E L3(u:) such that q , ' ( ~ , )r 

q ; ( ~ , , )  Kg . Note that K 9 [ d l ]and K,,[d, - d,] are irreducible, perverse 
where d l  ,d ,  are the dimensions of the fibres of p, ,p, . Using the fact that i 

is a sink, we see easily that d l  - d,  = d . Thus, 

(e) K,,[d] is an irreducible perverse sheaf. 

Let K, ,  = (q,),K,,  E W X , ) .  
Using the fact that j' , j" are open imbeddings we see that Kg = j " ~ ,  and 

K,,  = J 
.It* 

K,  . Since the diagram j" ,pi , q, , k is cartesian, we have k * ~ ,= 
K, ,  . It is easy to check that q, is an isomorphism. Hence from (e) it follows 

that K , ,[dl  is an irreducible perverse sheaf. 

Summarizing, we see that the complex (p,),K,[-dl E D,,, has support 
contained in X ,  and its restriction to the open set X, of X is irreducible 

perverse; note that X,  c E,, ,,, and X - ,, E,,cXo >,+,. This clearly implies 

(b). 
We now prove (a). Consider the commutative diagram 

where the notation is as follows. 

The map u ,  takes y to ( x ,  W) where x E E,,, is uniquely determined 

by the requirements that W is x-stable and y is induced by x . (This is well 

defined since i is a sink.) 
- 1  I /

We have o:(L) = p;l (o,(L)), 3, = u ,  a, ( L )  . The maps u 5 ,  u, are in- 

duced by u ,  ,p3 ; the vertical maps are the obvious inclusions. 

The composition p3u identifies E, .,with a subspace of E, -,, and it fol- 

lows from the definitions that res,,, ,,L @,,,EL)*(p,u,= . Clearly, Tio is 

open in the support of (p ,  u ,  )*L , is contained in E, ,,,,and its complement 

in the support of (p,u, )*L is contained in E,, ,,,. Hence, to prove (a) it is 

enough to prove that u;(p,u,)*L[-dl is an irreduchle perverse sheaf or, equiv- 

alently, that u;uiu iL[-d l  is an irreducible perverse sheaf., Let L ,  = u i L  . This 

is an irreducible perverse sheaf on a,(L) since a, is open dense in the support 

of L . Let L ,  = u i L ,  . It is easy to see that u, is an isomorphism; hence L ,  is 
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an irreducible perverse sheaf on o;(L) . Consider the Gv-equivariant fibration 

p: o;(L) -+ G where G is the variety consisting of all I-graded subspaces V 

of V such that V/V E y, and p(x ,  V) = V . Note that u, identifies To with 

the fibre of p at W .  Since L, is an equivariant perverse sheaf and Gv acts 

transitively on G , it follows that uf L,[-dl is an irreducible perverse sheaf on 
To and (a) follows. (Note that d = dim G .) 

Now (c) follows easily from the arguments in the proof of (a), (b). This 

completes the proof. 

6.5. We no longer assume that i is a sink for R .  

Let L E Pv,,(with V E q). 
For each r such that 0 5 r 5 vi we shall denote by W, some object of 

We associate to L and i an integer invariant s(L) (or si(L) ). By definition, 

s(L) is the largest integer r such that 0 5 r 5 v(i) and such that 

(a) there exists L' E gW,,such that some shift of L is isomorphic to a 

direct summand of  1,* L' E gV,,. 
(This is well defined since (a) is satisfied with r = 0 .) 

Proposition 6.6. Assume that we are in the setup of 6.5 and that k is as in 5.1. 

(a) There exist complexes L:~(S(L)< r' 5 v(i)) and L;(S(L) 5 r' 5 v(i)) in 

@wrl, i-2 such that 

in  kTv, ,and such that L:(~,[ f ] E 9WS(L,,,for some integer f . 
(b) If i is a sink for R , then s(L) = t(L) . 

We can find an orientation R' for our graph such that i is a sink for R' . 
Let ST be as in 5.2. 

Using 5.4, 5.6, we see that s (Y(L))  is defined and is equal to s(L) ; we also 
see that the truth of (a) for F ( L )  implies the truth of (a) for L . Thus we see 

that it is enough to prove the proposition under the additional assumption that 

i is a sink for R . 
From 6.4 we see that 6.5(a) is satisfied with r = t(L) ; it follows that 

(c) s(L) 2 t (L) .  
Next we show that 

(d) s(L) 5 t (L) .  
Assume that 6.5(a) holds for some r 5 v(i) and some L' . Then it holds 

with some L' E Pw,,a ; some shift of this L' is a direct summand of some 

Li,,, ,(on Ewr ,,) where (i , a) E S,-, . Hence 6.6(a) holds with L' = Li,., . 
Using 3.7(a) we see then that 1,* L' = Lil, , ,for some (i' , a') E S, such 

that the first entry of i' is r . 



390 G. LUSZTIG 

Now the support of Lit , ,,is clearly contained in the set of all x in E,, , 
such that x leaves stable some I-graded subspace W of V with V/ W E q,. 

For such x we have xj(Vj,) c W, for all h E R such that h" = i ,since we 

then have h1 # i ,and xj(Vh,) = xj(Wj,) c W,. This shows that the support of 

,a' ,n is contained in E,,, >, . Since some shift of L is a direct summand 
of Lit ,  a,, ,, it follows that thesupport of L is contained in E,, ,

> 
>,- . Thus 

r 5 t(L) and (d) follows. Combining (c),(d) we see that (b) holds. 
Next we prove (a); we may replace there s(L) by t(L) as we have just seen. 

Now (a) is trivial in the case where t(L) = u(i) : in this case, we may take 
~ i = ( ~ = L . Hence we may assume that t(L) < u(i) and that (a) is 0 ,  L:;,, ~ 
already proved when L is replaced by an L" with t ( ~ l ' )  > t(L) . 

Using 6.4 we see that there exists K E 9wt,L,such that ,, ll(L)* K E @v,, 
I1 - I

is a direct sum of finitely many summands of the form L [f] for various 
L" E PV,,and various f' E Z ; exactly one of these summands satisfies 

L" = L ; the others satisfy t ( ~ l ' )  > t(L) . 
Applying the induction hypothesis to each L" # L above we see that (a) 

holds for L . The proposition is proved. 

7.1. In this section we fix an orientation i2 for our graph. 

Lemma 7.2. Let L E 9,,, with V # 0 .  There exists some i E I such that 
si(L)> 0 .  (See 6.5(a).) 

We have V E q . By the definition of 9,,, , there exist ( i ,  a) E S, and 
f E Z such that L[ f ] is a direct summand of L, , a ;,in @',n. AS in 2.2, we 
see that we may assume that all coordinates of a are strictly positive; moreover, 
a is nonempty since V # 0 .  Using now 3.7(a), we see that if we set i = i, 
(first entry of i ) ,  then si(L) 1 a,  > 0 .  The lemma is proved. 

Proposition 7.3. Let L E 9,,,with V E 5. 
There exist L, , . . . ,L,, L,+, , .. . , L,,, E @',, such that the following 

hold. 
(a) Each Lj  is of the form Li ,,;,[dl for some (i , a) E S, and some integer 

d .  
(b) L $ ( L ,  $ . . .$L, )  L,,, $...$L,+,,, in gV,,. 

This is trivial for V = 0 ; hence we may assume that V # 0 and that the 
result is already proved for graded vector spaces of total dimension strictly 
smaller than that of V . 

By general principles, we may assume that k is as in 5.1. By 7.2 we can 
find i E I so that si(L) > 0 .  We apply 6.6(a) to L and this i . The induction 

hypothesis is applicable to each L:, ,L: appearing there. The desired result 
follows, using 3.7(b). 
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8.1. In this section we assume that we are given an orientation R for our graph. 
We will need a variant of the construction of the product * in 3.1. Assume 

that we are given six objects T , T' , T" , W ,  W' , W" of 7 such that T is 

isomorphic to T' CB T" and W is isomorphic to W' @ W" (together with the 

grading). Consider the diagram 

where the notations are as follows. 

F" is the variety of all quadruples (z , y , T , W) where z E E,,, , y E 

E,,, , T is a z-stable I-graded subspace of T such that T is isomorphic to 

T" and W is an y-stable I-graded subspace of W such that W is isomorphic 

to W" . 
F' is the variety of all sequences (z , y , T ,  W , r , u , s , t) such that 

( z ,  y ,  T ,  W) E F" and r : T" r T ,  u : T' ?Z T I T ,  s : W" Z W ,  t : 

W' 2 W/ W are isomorphisms in 7 . 
We have q, (z, y, T, W, r, u, s, t) = (z', y', z", Y " )  where zhrh' = rhllzil: 

zhuh1 uh1, 
I I 

, : Whll ,TiI -t Thll, = zh: Thl Thl,/Thll yhsh1= s h I l Y ~Wi1 -' 

yhthl= t,hllyA:w;, -+ Wh,,/Wh,I for all h E H;  q,(z, y ,  T ,  W ,  r ,  u ,  s ,  t) = 

( Z , Y ,  T ,  W) ,  9 3 ( ~ , ~ ,  T ,  W ) = ( z , y ) .  
Note that q, is smooth with connected fibres, q2 is a GT, x GwIx GTIIx Gwll-

principal bundle, and q3 is proper. 

Now given L' E @,., ,., , and L" E 4,., wll ,,, we can form the external 

tensor product L' 8 L" (a semisimple, G,, x Gwl x GTII x GWjI-equivariant 
complex on ETI, ,x Ewl, ,x ETl,,,x Ewll ,,). Then, just as in 3.1, there is 

a well-defined semisimple complex L on F" such that q ; ( ~ )  E g;(L1 8 L") 

in B(F'). By definition, L' * L" = (q3)*(L)E B(ET, ,  x E,, . This is 

additive in L' and in L" ; moreover, if L' is an external tensor product L, @L, 

(with L E and L, E and L" is an external tensor product 

L3@ L4 (with L3 E @,,, , , and L, E @wll, ), then one can easily verify that 

L' * L" is isomorphic to the external tensor product (L, * L3)@ (L, * L,) , where 

L, * L3 E @,., and L, * L, @,., E are defined as in 3.1 (with V, v', V" 

replaced by T ,  T' , T" or by W , w", W" ). It follows that, in general, we have 

L' * L" E @T,W,R. 

8.2. Assume now that we are given V,  v', V" E 7 such that V E q ,V' E 

, V" E q l l ,  where v ,  v', v" E NI satisfy v = v' + v" (as in 3.1). At 

the same time we are given (as in 4.1) an I-graded subspace W of V with 

WE^^. Let T = V / W .  Then T E T  where v = r + w .  

Let L' E @vl,,and let L" E @vll,,. Then L' * L" E @v,, is defined as in 

3.1, 3.2, and res,,,(L' * is defined as in 4.1, 4.2. L")) E q,,,, 
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8.3. Let Jlr be the set of all ordered quadruples K = (a ' , / 3 ' ,  a " ,  P I ' )  of ele- 
I I1

mentsof N' suchthat v1=a1+/3 ' ,  ~ " = a ~ ~ + / 3 ~ ~ ,  ,z = a  + a  w=/3'+/3".  

For each K = ( a 1 ,p l ,  a " ,  /3") E Jlr we choose a graded subspace w'(K) 

of V' and a graded subspace w"(K)of V" such that w'(K)E 5, and 

w " ( K )  E . Let T 1 ( k )  v'/w'(K), = ; then T ' ( K )E y.= T " ( K )  V I 1 / W " ( ~ )  

and T1'(lc)E yll. 
Applying the construction of 4.1 to V' , w'(K), T ' ( K ), L' (resp. to V" , 

w"(K),  instead of V ,  W ,  T  , K , we obtain a complex L: =T " ( K ) ,  L" ) 

wl(x)L'r e S ~ l ( ~ ) ,  @T'(K), w'(K),  w"(K) ' ' I  @T"(K), w"(K),  Q )Q (resp. L: = r e s ~ l l ( ~ ) ,  
instead of res,, L E ,, @,, .  

Next, from L: and L: we can construct a complex L: * L: E @,, w ,  

by the construction in 8.1 applied to T , T' = T ' ( K ) ,T" = T " ( K ) ,  W ,W' = 
-w'(K) ,W" = w"(K).We can now state the following result. 

Proposition 8.4. Assume that k is as in 5.1. With the notations in 8.2, 8.3, we 
have 

r e s T , w ( ~ '* L") 2 $ L: * L : [ - ~ ~ ( K ) ]  

K E N  

in ~9~ , , ,,, where 

Let K' , M' E ,,@vl and @vll,, EMuK " ,  be such that L' $ K' IM' 

and L" $ K" E M" . Clearly, if the proposition is true for (K' , K") and for 

( M I ,  MI1) (instead of (L' , L") ) then it is automatically true for (L' , L") . 
By 7.3, we can find K' , M I ,  K" ,  M" as above, which are direct sums of 

shifts of complexes of the form L i , a ; Q .We see therefore that it is enough to 

prove the proposition under the additional assumption that L ,  L' are direct 

sums of shifts of complexes of the form Li,a ;,. 
It follows immediately that it is enough to prove the proposition in the special 

case where L' =  Lit , ;, and L" =  Lill, all ; ,(with (it, a') E SvIand (i" , a") E 

Svl!). 

Define ( i, a )  E S, as in 3.2; then L' * L" = L, , ,;, by 3.2(b)and, by 4.2, we 

have 

where the summation is over the pairs of sequences c l ,  c" such that ( i, c') E S, , 
(i, c") E S, and c' + c" = a . Here, 
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Let us now fix K E Nas in 8.3. By 4.2, 

L: E $L,., ;, 8 Lit,e l l  , ,[-2M(d1 , e')]  
d' ,e' 

where the summation is over the pairs of sequences d' ,e' such that (i' , dl) E 

Sat , (i' ,el) E Sgl and d' + e' = a' . Similarly, 

where the summation is over the pairs of sequences dl', e" such that (i" , dl') E 

Salt, (i" , e") E Sg,, and d" + e" = a" . 
Using now 3.2(b) and the results in 8.1, we see that 

L: * L: I$L~.~..;,, d l d l l  

where the summation is taken over the quadruples of sequences dl, d" , e' ,e" 

such that (i' , dl) E %, , (it' ,dn) E Sail, (i' ,e') E Spl, (i" , el') E Spj l, dl + el = 

a' , and d" + e" = a" . (Here i'i" is the sequence obtained from the sequence i' 

followed by i" and d'd" , e'e" have a similar meaning.) We note the identity 

g ( ~ )= ~ ( d ' d " ,e'e") - ~ ( d ' ,el) - ~ ( d " ,e"), 

which is easily verified. Using this identity together with (a) and (b), we obtain 

the desired result. 

9.1. In this section we shall assume that I has exactly two elements: i and j . 
Let N be the number of edges joining i , j ; thus, H has exactly 2N elements. 

Let V E 7 be such that dim = 1, dim 7= N + 1 . Let Ro = {h E 

~ l h "= j ) .  

9.2. We now fix an orientation R for our graph (not necessarily Ro ). 

Let R' = {h E Rlh' = i ) ,  Q" = {h E Rlh" = i)  . We denote by a ' ,  a" the 

number of elements of Q' ,R" respectively. 

The set A" of nilpotent elements in E,,, is the set of all x E E,, ,such 

that xh,xh2= 0 for all h, E R" , h, E R' or, equivalently, such that the sum of 

images of the maps xh(h E R') is contained in the intersection of the kernels 

of the maps xh (h E a"). 
We define a stratification N = Npl is the set of Up12pl, as follows: SS,' 

all x E N such that the sum of images of the maps xh(h E R') has codimension 

p' and the intersection of the kernels of the maps xh (h E R") has codimension 

p" in V, . 
Clearly, 

I ' 1
(a) 4.,,.. is nonempty if and only if N + 1 -p' 5 a' , p" < a" , p 2 p ; if 

these conditions are satisfied, then Yp1 is smooth, irreducible, of dimension ,41. 

a ' ( ~+ 1 -p') + a"p" +p1'(p' -p") +p ( N  + 1 -p') . 

(b) 8 L,,,..,e le l ,  :,[-2M(d1, e') - 2M(dU, e")] 
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9.3. For any p E [0, N + 11 let gp be the variety of all pairs (x , W) where 

x E E,, ,, W is a codimension p subspace of V, ,and x, (Vi) c W ( h E R' ), 

x, 1 W = 0 ( h E R" ). Let Sp c E,, ,be the image of the first projection 

$ -E,,, . Then the first projection defines a proper map rrp :gP-Sp. 
It is easy to see that SalI= Sat,+,,but apart from this, the subvarieties Sp 

are distinct. 

Proposition 9.4. Let I, (p E [ l  , N + I]) be the simple perverse sheaf on E,, 

dejned by the subvariety Sp and the local system 1 on its smooth part. Let I, 
(p E [0, N + 11) be the complex of sheaves (rr,)!(l)[dimS,] extended by zero 
on the complement of Sp in E,, ,. We have 

(a) I: = lo,~ h + ~= 

(b) if 1 l p ~ a " ,I~=I,$I,+,i f a " + l  < p <  N .  

(c) la..= . 

Note that 
(d) Sp is the union of the strata 3.,,.. such that p' 2 p 2 N + 1 -p' < 

I / I  I' 
a , l a .~ 

One of these strata will be open, namely the one with minimal p' and max- 
imal p" . Thus, if p > a",  then p 2 N + 1 - a' = a" + 1 and the open stratum 
is 3 , a ~ ~ ;  = a u +  1 andtheopen stratum if p l a",  then p < N +  1 - a '  
is S$If+l. In particular, Sail since they have the same open dense ,, = 

stratum, S$II+,,a l l  . Using 9.2(a), we see that the dimension of Sp is equal to 

(p + a ' ) ( ~+ 1 -p) + al'p. 

We now consider the fibre F of II, : ip Sp at a point of 3. (as -
in (d)). We compute /3(p1, p") = dim Sp- dim%. ,,.. -/ 2 dim F . Note that 

dim F = (p' - p)(p -p") . It follows that P(pl,  p") = (p - a" - l)(pl-p)  + 
(a" -pM)(p-p") - (p' -p)(p - p") . We can write ~ ( p '  ,p") in two different 
ways: 

(el B(P:, ply) = (P' - a" - l)(p' -P) + i ( p  - PI') and 
( f )  P(P P ) = (a" -Ptt)(P-PIt)+ (-A - 1)(Pt-P) 

where i = a l '+p  -p ' -pl ' .  
We have p' - a" - 1 2 0 ,  p' 2 p 2 p" ; moreover, clearly, either i or 

-A - 1 is 2 0 .  Using one of the expressions (e) or (f) for ~ ( p ' ,  p") we see 
that ~ ( p '  ,p") 2 0 . 

Assume now that B(pl, p") = 0 .  
If i J -2, we see from (f) that p' =p and either p" =p or p" = a". The 

alternative p" = a" cannot occur since it would imply i = 0 ; the alternative 
pl' = p cannot occur either since it would imply p' = p" contradicting p' > 
a" 2 a" . 
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If il > 0 ,  we see from (e) that p = p" and either p' = p or p' = a" + 
1 . The alternative p' = a" + 1 cannot occur since it would imply that il = 

-1; the alternative p' = p cannot occur either since it would imply p' = p" 
contradicting p' > a" 2 a". 

If il = 0 ,  we see from (e) that either p' = p and p" = a" or p' = a" + 1 

and p" = p - 1; in the first case, we have p 2 a" + 1, while in the second case 
we have p 5 a" + 1 . 

If il= -1, we see from (f) that either p = p" and p' = a" + 1 or p" = a" 
and p' = p + 1; in the first case, we have p 5 a",  while in the second case we 

have p 2 a" . 
The inequality /3(p1, p'') 2 0 shows that the proper map II,: 5, - Sp is 

semismall in the sense of Goresky and MacPherson. (Note that SPis smooth.) 

Hence I; is a direct sum of finitely many simple perverse sheaves on E,,, . 
One of these is necessarily I,, which appears with multiplicity one. Now the 

cohomology sheaves of (np) , ( l )  are constant on each stratum NPf,p fd ince  np 

restricted to a stratum is a ~rassmannian bundle. It follows that any summand 

of I; other than I, must be a simple perverse sheaf defined by the closure of 

one of the strata with constant coefficients. The strata that contribute are de- 

termined by the equation ~ ( p '  , p") = 0 .  As we have seen earlier, this equation 
has at most one solution other than the open stratum, and the closure of that 

stratum is either SP+,or Sp-I. This solution, if it exists, gives a summand 

that appears with multiplicity one in I; since the fibres of II, are irreducible. 

The proposition follows. 

we have 

@ I; % @ I; 
P even p odd 

where p is subject to 0 5 p 5 N + 1 in both sums. 

9.6. The set PV,,consists in our case of I, ( p  E [ I ,  N + 11); this follows 

from the definitions and from 2.2(a), 2.4(b). 

10. DEFINITIONOF THE CANONICAL BASIS B OF U-

10.1. We shall again fix an orientation SZ for our graph. Let Xv,, be the 

abelian group with one generator (L) for each isomorphism class of objects 
of gV.,and with relations (L) + (L') = (L") whenever L" is isomorphic to 

L ~ L ' .  
We regard Xv,, as a module over d = Z[v , v-'1 ( v is an indeterminate) 

by defining v (L) = (L[ 11) , v 
- 1 

(L) = (L[- 11) . It is clearly a free d-module 

with basis (L) where L runs over Pv,,. 

From 2.3 we see that, given V,  in C , there is a canonical isomorphism 

Xv,,E XT, ,. Hence we obtain a d-module Xu,,provided with natural 

isomorphisms Xu,,% Xv,,, for any V E . We may regard Li, a ;,as 

,)In 9 ( E v ,  9.5.Corollary 
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elements of Xu., ,for any (i , a) E S,, . On the other hand, Pv,,gives rise to 

a canonical basis of Z,,,,. 

10.2. The operation * in 3.1 defines a d-bilinear map (denoted (a',  a") --, 

a'ta"): Z,,,n~X,,..,n-Xu, , ,  for any v', v", v E N' such that v = v'+vU. 

This has the issociativity property (a'*aU) *au' = a'* (a"*aU') for any a' E 5., 
a'' E ZUI, . (See 3.4.) , a"' E ZuII1 

We now define a new d-bilinear map Z,,,, ,x ZU1, v,, 'Wy ,,(for = 

v' + v'' ) by (a' , a'') -.a' o a" = 
rnn(ut ,ul ')  

a
I * a" where 

m,(v' , v") = xvl(h')v"(h") + xv'(i)vU(i). 
hen i 

This again have the associativity property (a' o a") o a"' = a' o (a" o a"') for 

any a' E Xu.,,, a" E Se,..,,, a"' E ;P,,l,,,. (This follows from the identity 

m,(vl, v")+m,(d+v" , v"') = m,(v", v"')+m,(v', v"+vl") , which is easily 

verified.) Thus (a',  a") + a 
I 

o a
/ I  

defines a structure of associative graded d-

algebras on Xn = @,, Xu!, . (The grading is by elements v E N' .) This 

algebra has a unit element in Xo,,. Note that 

(a) Z, has a canonical basis defined by the elements of Pv,,for various 

V E T .  

10.3. Now D (see 3.8) defines an involution of Z as a graded abelian group; 

from the formulas in 3.8 we see that this is a ring homomorphism that is semi- 

linear with respect to the involution of the ring &' that takes v to v-' . 

10.4. In the setup of 4.1, let XT,,, ,be the the abelian group with one gener- 

ator (L) for each isomorphism class of objects of and with relations 

(L)+ (L') = (L") whenever L" is isomorphic to L@ L . We regard XT,w ,,as 

a module over d by defining v(L) = (L[l]), v 
-1

(L) = (L[- 11) . It is clearly 

a free d-module with basis (L, @ L,) where L, (resp. L, ) runs over PT,, 
(resp. Pw,,). Hence the external tensor product defines an isomorphism of 

@,, Z,,,d-modules Z,,, XT,W,,.  
The functor res,, ,: 6FV,,--, @T,w ,,is additive; hence it induces a ho- 

,,Z,,+,Xv,: 

morphism (of &'-modules) res,, ,: Xu,, --, Z,,, @ X,, ,(where T E ?, 
W E  7,). 

10.5. We have the following associativity property. Assume that we have v = 

a + o' + a" (in N
I 

). Then the homomorphisms ( 1@ res,., ,..) res, , ,,+,,, and 

momorphism res,, , This can be regarded as a homo- .  

,,,(res, @ 1) res,+,l, ,,, from Xu,,to Xu,,@ qI,,@ Xu.,,,coincide. (See 

4.10.)  
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10.6. Let v ' , v U , r , o E N '  besuchthat v ' + v U = r + o .  Let L 1 ~ Z v i , , ,  

L" E Zvi.,, . The following equality holds in Se, , ,  B %,, : 

where the sum is taken over all K = ( a ' ,  p ' ,  a " ,  P")  E A'",notation of 8.3 

(thus, v' = a' + p' , v" = a" + P" , T = a 
I + a 

I' , o = P' + /3" ), and 

h E R  i E I  

(By definition, ( a ,  B a,) 0 (a3B a,) = ( a ,  o a3)B (a,  0 a,) for a ,  E j%. ,?,  
a, E Z8i, ,, ,,Z,,,Ea,,, , a, E Xp,, .) This follows from 8.4 and the identity 

10.7. We consider the abelian group Z' of all functions I Z (with the 

pointwise sum operation); this contains NZ as a submonoid. Let T be the 

group algebra of this group with coefficients in &' ; thus, T has an &'-basis 

{%/a  E z'} and K,Ka. = %+a. . Let TKO be the &-module T B, ;Y,. 

Proposition 10.8. There is a unique associative &'-algebra structure on TK,  
such that 

(%8L)(%i B L') = v r ( ~ ~ a " % + a iB ( L0 L') 

for any L E X8,,, L' E Z8,,,,and any a ,  a' E Z' , where 

r ( p  , a' )  = -x /3(h')a'(hU)+ 2 C /3(i)a1(i). 

This follows from the associativity of the product L o L' and the identity 

r ( P ,  a ' )  + r ( p  + p' , a") = r ( p l ,  a") + r ( p , a' + a"). 

10.9. We shall write KaL instead of KaBL E TK,  . The algebra structure 10.8 

on TK,  gives rise in the usual way to an algebra structure on TK,  B, TK,  . 
We have the following result. 

Proposition 10.10. There is a unique coassociative &'-coalgebra structure on 
TK,  with comultiplication A: TK,  -.TK,  B TK,  such that for any L EZv,, 
and any a E Z' we have 

A(KaL)= xvS(' ' W ) ( ~ aB KO-,) res,, ,(L) 

where the sum is taken over all z , o in N' such that z +o = v ; the last product 
is computed in the algebra TK,  8, TK,  ;we have 

This follows from the associativity property 10.5 of res and the identity 

s(y + Y' , Y " )  + s ( y ,  Y ' )  = s ( y ,  Y' + Y " )  + s ( y l ,  7"). 
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Proposition 10.11. The comultiplication A : TK,  + TK,  B TK,  is an algebra 
homomorphism. 

,,;Z,.,EL", ,,Xu.Let L' E , and let o' , o" be in Z .  Let v = v' + v" . 

Recall from 10.2 that L' 0 L" = v 
mn(ut ,v")L' * L". By 10.6, 10.8, 10.10, we 

have 

(in the first sum, z ,  w E N 
I 

are subject to z + w = v ; in the second K = 

( a ' ,  /3' , a" ,  P I ' )  is subject to v' = a' + p' , v" = a" + P").  
On the other hand, we have 

where K is as in the previous formula and s ' ( K )  = s(a1, p') + s ( a U ,P") + 
r (a l ,0")+ r(/3', a" - a") . 

It remains to verify the following identity: 

r ( v ' , c")+ ~ ( 5 ,0)+ f ( K )  = s (a1 ,p ' )  + s(al ' ,B") + r (a1 ,  or') + r ( $ ,  0'' - a") 

where z = a' + a " ,  o = p' + P" and v' = a' + a".  Since r( , ) , s( , ) are 
bilinear, this is equivalent to the identity 

s (a1 ,p") + s(al ' ,p ' )  = r ( p l ,  a") + f ( K )  . 

which is easily verified. 

10.12. For each i E I and n E N we denote by q(a'the canonical basis 

element of XF,,where p is such that p(i)  = a and p ( j )  = 0 for all j # i . 
(This corresponds to the complex 1 on the zero vector space E,,, , where 

W E 5 .) Note that F/') is the unit element of the algebra Z, . It is clear that 

where D is as in 10.3. 
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To state the following result we introduce some notation on Gaussian bino- 

mial coefficients: 

Proposition 10.13. (a) For any ( i ,  a) E S, (with m terms each) we have the 
following equalities in XQ: 

where d (i , a) is as in 3.8(b) and 

(D is as in 10.3.) 

(b) The elements F/;(") ( i  E I ,  a E N) generate the d-algebra 3&. 

(c) If i E I and a ,  a' E N ,  we have 

F:') o F/") = [ a ,  al]Fi (a+al)  

in ZQ. 
(d) Let i ,  j be distinct elements of I and let N be the number of edges 

joining them in our graph. We have the following equality in ZQ: 

The first formula in (a) follows from 3.8(a). 

From 3.7(a) we see that the two sides of the second formula in (a) are equal 
for a certain unknown value for the exponent of v . The value of that exponent 

can be determined by applying the ring involution D to the two sides of that 

equality, using the first formula in (a) and 10.12(a). 
Now (b) follows from (a) and from 7.3. The equality (c) follows from (a) 

and 2.4(a); (d) follows from (a) and 9.5. 

Proposition 10.14. Let a' be a second orientation of our graph. Assume that k 

is as in 5.1. Then 9 (see 5.2, 5.6) defines an d-l inear isomorphism ZR Znt 

(preserving the grading) which will be denoted again by 9 .  

(a) 9 : XR 2 .W,, is an algebra isomorphism. It takes the canonical basis 
(10.2(a))of XQ onto the canonical basis of ZQ,. 

(b) There is a unique algebra homomorphism TKQ 2 TKQi that takes KaL 

to % 9 ( L )  for any a E Z' and any L E ZR.This is compatible with the 
comultiplication. 

(a) follows from 5.4, 5.5, 5.6. The first statement of (b) follows from (a). To 

verify the compatibility in the second statement, it is enough to verify it on the 

algebra generators of ZQ(see 10.13(b)) and on the generators of T , where it 

is obvious. 
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10.15. Let u- be the - part of the enveloping algebra u of the Lie algebra 
(over Q )  attached by Kac and Moody to the generalized symmetric Cartan 
matrix (a,,) indexed by I x I where aii = 2 and -a,, is the number of edges 
joining i , j in the graph, for i # j . This is the Q-algebra defined by generators 

F, (i  E I) and relations 

for any i # j (with N = -aij). 

Let U- be the -part of the quantized enveloping algebra U (over A' ,  
the quotient field of d ) attached by Drinfeld and Jimbo to the same Cartan 
matrix. This is the A'-algebra defined by generators Fi (i  E I) and relations 

for any i # j (with N = -ai, ). ( U itself has additional generators K, , K ; ~, 
Ei (i  E I).) 

We shall regard U- as a algebra; the grading U- is~ ' - ~ r a d e d  = $, U; 

uniquely defined by the condition that for all i E I we have Fi E U, where 
p(i) = 1 and p( j )  = 0 for j # i .  

Note that U; is a finite-dimensional A'-vector space for any v E N' . 
Similarly, u- is a graded N'-algebra. 

10.16. From 10.13(c),(d) we see that there exists a unique A'-algebra homo- 

morphism I,: U- +Z, oA' such that I,($) = F,"' for all i E I .  

Theorem 10.17. (a) I, is an isomorphism of A'-algebras. 

(b) Let fl' be a second orientation of our graph. Then I,, =9I, where 9 
is as in 10.14(a). 

(c) Let B be the inverse image under I, of the canonical basis of 2,.Then 

B is an A'-basis of U- that is independent of Q . (We call it the canonical basis 
of u- .) 

First note that (b) holds: it is enough to verify the equality in (b) on the 
- algebra generators F, ,where it is obvious. 

In the rest of the proof we assume that, for a particular orientation f l ,  we 
have 

(dl dimQ u, 5 dimq Xu,,8 Q 

for all v . (Here, Q is regarded as a d-algebra with v --+ -1 .) 

We now prove (a). Note that I, is compatible with the ~ I - ~ r a d i n ~ s ,  that 
the homogeneous components of these gradings are finite-dimensional, and that 
I, is surjective (see 10.13(b),(c)). 
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Hence to prove (a) it is enough to prove that 

for any v . By general principles, it is enough to verify this in the case where 

k is as in 5.1. In that case, dimA.Xy,, B A' is independent of the choice 

of orientation, by 10.14(a). Hence it is enough to verify (e) for a particular 

orientation R , for example for one such that (d) holds. 

Since u- is a specialization of U- for v = 1 ,  we have dimAi U, 5 

dim, u, ; hence (d) implies 

dim,. U; 5 dim, Xu,,8Q = dim,. Xu,,B A' 

for any v . This proves (a). 

To prove (c), we may again assume by general principles that k is as in 5.1. 

In that case, (c) follows immediately from (a),(b) and 10.14(a). This completes 

the proof, except for the verification of (d); that verification will be done in 

10.21. 

10.18. Let X be a variety over k .  Let M(X) be the Q-vector space of all 

constructible functions f :  X -,Q ,  that is, of all functions such that f- ' (a) is 

constructible for any a E Q and is empty for all but finitely many a .  

Following MacPherson [MI, for any morphism m: X -. X' of varieties 

we define linear maps m*: M(x') -, M(X) and m,: M(X) -. M(x') by 

(m'fl)(x) = f l (m(x) ) ,  (m!f)(xl)  ax(m-'(x') nf - ' ( a ) ) ,  where x de-= xOPQ 
notes Euler characteristic in 1-adic cohomology with compact support. 

These operations are related to the analogous operations in derived category 

as follows. 
If L E 9 ( X ) ,  we can attach to L the function fL E M(X) defined by 

fL(x) = xi(-1)' dim^'^ where %'L are the stalks of the cohomology 

sheaves of L at x E X .  Now let L' E B(x ' ) .  We then have m! fL = f,!, and 

m*fL, = f,.,, . We also have fLfdl = (- 1)
d 

fL for any integer d . 

10.19. F or any V E T , we define A ( V ,  R)  to be the vector space of all func- 

tions in M(Ev,,) that are constant on the orbits of Gv . Now let V, V' , V" 

be as in 3.1, and let f ,),M(Ev,E , ,),M(Evi,Ef'' . We define a func- 

tion f * f" ,)M(Ev,E formally as in 3.1. We shall use the notations of 3.1. 

Let ,),EV,.xaM(Ev,,Ef, be given by f,(x' , xu) = f'(x')f"(xu). Then 

there is a unique function f3 E M(E") such that p;f, = pi& ; by definition, 

f '  * f"= ( ~ 3 ) ! ( f , ) '  

Next we note that given v E N' , the vector spaces A ( V ,  R)  for various V E 

can all be identified in a coherent way with a single vector space A ( v  , Q) 

(by the invariance condition on the functions considered). The operation above 
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becomes a pairing d ( v l ,R) x d ( v l ' ,  R) - d ( v , R) denoted ( f '  , f " )  -
f' * f" . Let d ( R )= $, d ( v , R) . The operation * makes d ( R ) into an 

associative Q-algebra. 

Let i E I ;  let y be such that y ( i )  = 1 and y ( j )  = 0 for j # i .  Then 
d ( y , R) is one dimensional, with a canonical basis element Ficorresponding 

to the function on ( 0 )  with value 1 . Let d o ( R )be the subalgebra of d ( R )  
generated by the elements Fi ( i  i I )  , and let d o ( v, R) = 4 v  , R)n d o ( R ). 
Then do( R )= $, do(V , R) . 

The definition of d o ( R )given above is a reformulation of a definition given 

by Schofield in [S] (which is itself a variant of a construction of Ringel [R]). We 

shall recall the definition of [S] in a slightly different form, more convenient for 

our purposes. 

Let Sf be the set of all sequences i such that ( i ,  a )  E S ,  where a is a 

sequence of form ( 1 ,  1 ,  . . . , 1 ) .  

Let R be the Q-vector space with basis indexed by the elements i in U, S: . 
We regard R as an associative algebra with product i'i" as in 3.2(b). 

For any V E and any x E E,, a we define a linear form tx : R - Q 

by t x ( i ) = 0 if i E S f .  with v' # u and t x ( i ) = ~ ( n , , , ) - ' ( x ) )if i E S f ;  

here (a )= ( 1  , 1 , . . . 1 )  and x i ,a is as in 1.5. Let Y be the intersection of the 

kernels of tx for various V , x as above. One shows that Y is a two-sided ideal 

in R , and one defines d i ( R )  as the Q-algebra R / Y  . We define a Q-linear 

map R -&(a)by associating to a basis element i of R the constructible 

function x - tx ( i )  on E,, a (where i E Sf and V i ). It is clear that 

the kernel of this map is exactly Y and its image is exactly d o ( R ) .Hence it 

defines an isomorphism 

(a) A;(")= do(^)  

compatible with multiplication. We shall denote the element of d i ( R ) corre- 

sponding to q.E Ao(R), again by Fi.  
The following proposition is proved in [S]. 

Proposition 10.20. Assume that R has no cycles or, in other words, that we 

cannotjnd m 2 2 and h ,  , h 2 , . . . , h,  in R such that hi' = h:,, for 1 5 i < m 

and h: = hi . Then there is a unique Q-algebra isomorphism u- E d i ( R )  
under which F, corresponds to Fifor all i i I .  

10.21. We define a new product d ( v ' ,  R)x d ( v U ,R)-d ( v  , R) by ( f ' ,f')- f 'o  f'' = (- l )mn(u ' ,  .uiO' *  f'' This defines a new associative algebra structure 

on d ( R ) for which the subalgebra generated by the F, is the same subspace 

d o ( R ) ,but with a new multiplication. 

Let V E . The correspondence L - f, (see 10.18) defines a homomor- 

phism of abelian groups - d ( V ,R) . This extends uniquely to a Q-

linear map X,, a @ Q-d ( V  , R) , where Q is regarded as a &'-module with v 

acting as - 1 . This may be regarded as a Q-linear map Xu,a @ Q -d ( v , R); 
hence it gives rise to a Q-linear map Xa @ Q - d ( R ). From the definitions 
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and from the results in 10.18, we see that this is a Q-algebra homomorphism 

(for the new algebra structure on A ( R ) ) .  It clearly takes F,(" to Fi, and 

hence, by 10.13(b),(c) its image is exactly Ao(R)  . 
It follows that 

for all v . It is easy to see that our graph has at least one orientation R for 

which there are no cycles. For such R we call combine (a) with 10.19(a) 

and with the conclusion of 10.20 and we see that 10.17(d) holds. (Note that 

the isomorphisms in 10.19(a) and 10.20 are compatible with natural gradings.) 

Thus, Theorem 10.17 is proved. 

10.22. Let u'O be the A'-vector space I'@,I U- . According to Drinfeld and 

Jimbo, this is a Hopf algebra with multiplication such that U- , I'@ A' are 

subalgebras, and KaFi = uSFiKa,where i E I ,  a E Z' , s = CeH;h.=i-a(hU)  

2a(i) . The comultiplication is given by 

where ai  has value 1 at i and value zero at any j # i . 
The isomorphism in 10.16 can be extended to an isomorphism of A'-vector 

spaces 

A, : U-
< o  

E I'K, @ A' 

Proposition 10.23. (a) 2, is an algebra isomorphism. 

(b) 2, is compatible with the comultiplication. 

(a) follows from 10.8 and the definition of 2, . By 10.1 1, it is enough to 

check (b) on a set of algebra generators where it is obvious. 

10.24. If V E Z;: and V* is the dual space, we have an isomorphism p : E, ,,E 

E,. ,a given by p(x)  = x' where x; : Vi. -V,.. is the transpose of xz: Vh,,-
Vh!. 

This induces an equivalence of categories y, : 9 ( E v , , )  E 9(E,.. ,a) with 

inverse p' . 

Lemma 10.25. (a) If (i , a) E S, we have p, Li ,a ,  , Lit,,. ;aE 9 ( E v .  ,a) where 

(i' , a') are the sequences obtained by reading (i , a) from right to left. 

(b) p, defines a bijection Pv,,E 9,.,a with inverse p* . 

(c) p, defines an equivalence of categories @",,E ~ 9 ~ .,a with inverse p* . 

The (standard) verification of (a) is left to the reader; (b) follows from (a) 

and (c) follows from (b). 

Lemma 10.26. If V,  V' , V" are as in 3.1 and L' , L" are as in 3.2, then 

p!(L' * L") @,* EP!(L')*P!(L") , a .   
The proof is standard; it will be omitted. 
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10.27. The operation p, in 10.25 induces a &-linear isomorphism E 

jtl ,,afor any v ; hence it induces a &-linear isomorphism Xa E Xa (denoted 

again p, ) that carries the canonical basis of the first space onto the canonical 

basis of the second space (see 10.25(b)). It transforms the multiplication of 

the first space to the opposite of the multiplication on the second space. This 

follows from 10.26 and from the identity 

ma(v
I 
, v 

I /
) = mE(u1', v'). 

10.28. Let f :  U- + U- be the unique A'-linear isomorphism that takes each 

Fi to itself and transforms the multiplication into the opposite one. We have 

the equality 

(a)  (p,@ l)Aa = As f :  U- +Xa @ A'. 

(It is enough to check this equality on the generators F, ,where it is obvious.; 

1 1.1. In this section, L2 is fixed, but it is used only in proofs; the results do not 

refer to it. 

Proposition 11.2. For any v E N' , let B, = B nU i  . Then B = U, B, (disjoint 

union) and each B, is a Jinite set. 

This is obvious. 

Theorem 11.3. Let U- be the d-subalgebra of U- generated by the elements 

( [ r ] , ) - l ~ ;  for various i E I and r E N .  Then B is an &-basis of U- and B, 

is an &-basis of U - n U, for any v . 

Indeed, under An, U- corresponds to , regarded as an d-subalgebra 

of Xa@ A ' . (See 10.13(b).) 

Proposition 11.4. The A'-linear isomorphism f : U- E U- (see 10.28) takes B 

onto itse6 

This is clear from 10.27, 10.28. 

Theorem 11.5. (a) Let b' , b" E B ; let us write their product in U- as b'b" = 

xbeB,,I. ,,b with 61, ,, E A ' .  Then f,. ,,I. ,, E N[u , V-'1f a t   b t t  

(b) Let b E B, ; we have 

in U- 
<o 

@ U-
<o 

where g b l ,  ,,., ,E N[u , up']  

Let b ,  b', b" be as in (a). Let V,  v',  V" be as in 3.1 so that b ,  b', b" 

correspond respectively to L , L' , L" in Pv,a , Pv,, a . Let us write a , Pvt1, 
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Then from the definitions, we have &. = us EdN(L , d)ud for some in- 

teger s and (a) follows. 

Now let b ,  b', b" be as in (b). Let V ,  T ,  W be as in 4.1 so that b ,  b', b" 

correspond respectively to L , L' , L" in PV,a , PT,a ,Pw,a . Let us write 

res, %, L  = 

Then from the definitions, we have g,., ,,.,,= us EdN(L' , L" , d)ud for some 

integer s and (b) follows. 

11.6. Let b E Bv and let i E I .  We associate to b ,  i an integer si(b) as 

follows. By definition, si(b) is the largest integer r such that 0 5 r 5 v(i)  and 

such that 

(a) there exists z' E U- such that b appears with nonzero coefficient in 

F,'zl , expressed as an A'-linear combination of elements of B or, equivalently, 

( a l )  there exists b' E B such that b appears with non-zero coefficient in 

F;b'  , expressed as an d-l inear combination of elements of B . 
(This is well defined since (a) is satisfied with r = 0 .) 

Using 6.6 for our R,we see that 

(b) there exist elements z:, E U- (si(b)< r' 5 v(i))  and z; E U- (si(b)I 
r' 5 v(i ) )  such that 

and such that zy(biuf E B for some integer f 

In particular, be must have 

(c) b E F?(~)u-. 

Theorem 11.7. (a) For any i E I and any r 2 0 ,  the intersection F:U- nB is 

an A'-basis of F:U- . 
(b) For any i E I and any r _> 0 ,  the intersection U-F: nB is an A'-basis 

of U- F: . 

Let z E F:U ;we can write uniquely z = CbEB E A' . Assumefbb with fb 

that b satisfies f ,  # 0 .  

By definition (1 1.6) we see that r 5 s,(b) . By 11.4(c), we have b E F,~'. '~)U-

and in particular, b E F[u- . This proves (a). Now (b) follows from (a) and 

11.4. 

Corollary 11.8. (a) For any v E N', the intersection (xi , ,  F:(~)u-) nB is an 

A'-basis of CiEIF:(~'u-. 
(b) For any v E N' , the intersection ( u F ) n B is an A'-basis of 
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11.9. Let v N ~ .E There exists a U-module -44(v) with a nonzero vector 

yo E M(v)  with the following properties: 

(a) Eiyo= 0 and Kiyo = for all i ( E, , K, are as in 10.15); ' L ' ~ ( ~ ) ~ ~  

(b) the map U- + M(v) given by z + zyo is surjective and its kernel is 

exactly xieIu-F/'~)+'.  
Moreover, the pair (M(v) , yo) is unique up to a unique isomorphism.  

Now using 1 1.8, we obtain the following result.  

Corollary 11.10. The image of B-((ZjeI  u -F~")+ ' )~B)under the map 11.9(b) 

is a (canonical) A'-basis of M(v) . 

12.1. We shall fix a function E : H + k* such that ~ ( h )  = 0 for all + ~ ( h )  
~ E H .  

Let V E 7 .The Lie algebra of G, is gl, = $,End(V,) ; it acts on E, by 

( a ,  x) + [a ,  x] = x' where x; = ah,,xh- xhahl for all h . 
We define a nondegenerate symplectic form ( , ) on E, with values in k 

by 

(Here, tr means trace as endomorphism of Vhll.) This form is clearly G,- 

invariant. 

The moment map attached to the G,-action on the symplectic vector space 

E, is the map cy : E, + gl, whose i-component cyi : E, + End V, is given by 

We have the following identity: 

for all a E gl, , x ,x' E E, 

Definition. A, is the set of all nilpotent elements x E E, such that cy,(x)= 0 

for all i E I .  

Clearly, A, is a G,-stable, closed subvariety of E, . 
Note that the equations cy,(x)= 0 appear in the work [K] of Kronheimer for 

a very particular V associated to an extended Dynkin graph (with V, being the 

spaces of the irreducible representation of the corresponding finite subgroup of 

SL,(C) ). As Ringel informed me, the equations cy,(x)= 0 have first appeared 

(for ordinary Dynkin graphs) in work of Gelfand and Ponomarev around 1979. 
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12.2. For any k E I and p E N we consider 

It is clear that for fixed k E I and p, 2 0 ,  the union U p: p s p o  A,,,,, is an 

open subvariety of A, ; hence, AV , ,, , is a locally closed subvariety of A,. It 

is clearly Gv-stable. 

Theorem 12.3. (a) A, is a closed subvariety of Ev ofpure dimension dim Ev/2 

(i.e. each irreducible component of A, has dimension equal to dimE,/2 ). 

(b) has pure dimension dim E,/2 . 

12.4. Let k E I and p E N be such that 0 < p 5 dimV, . Let V be a subspace 

of V,  of codimension p . 
Let V' E 'T be defined by V: = Vi for i # k and V; = V . 
Let J = eiH O ~ ( V ; ,  {(r,) E J J r ,  injective for all i). Let YV,) and let Jo= 

be the variety of all triples ( t , s , r)  E A,, , ,, ,x E, x J, such that shrh' = rhll th 

for all h E H and 

&(h)shsZ= 0 .  

h!H :  hl '=k  

On Y we have a free GVt-action 

Lemma 12.5. (a) The map (t , s , r) + (t , r) is a locally trivialfibration p': Y + 

A,!, ,, , x J, with fibres isomorphic to km , where m = -p(dimVk - p)  + 
P C h E H :  h l = k  dimVhll. 

(b) The map (t , s , r) + s has image equal to A,, ,, ,and it defines a mor- 

phism p": Y -A,,,,, that is a principal Gv1 -bundle. 

(c) If 2' is an irreducible component of Avl , ,, ,, then Z = p"(p'-l ( 2 '  x J,)) 

is an irreducible component of A,, ,,, . 
(d) We have dim Z = dim 2' + (dim E, - dim E,, ) /2 . 
(e) We have a 1-1 correspondence 2' o Z between the set of irreducible 

components of AVl, ,  , , and the set of irreducible components of A,, ,,, . 

(Compare [L3, 8.51.) Assume that (t , r) E A,, , ,, ,x J, has been fixed; let F 
be the set of all s E E, such that (t , s ,  r) E Y . We must show that F% km . 

Choose a p-dimensional subspace v of V, , complementary to V . 
Let F'be the kernel of the linear map 

given by (fh) - XheH: e(ii)tzfh . ~t is clear that s - (sh1 V) gives an 

isomorphism FE F . But the last linear map is surjective since t E A,, , ,, ,; 

hence its kernel has dimension m , as required. Now (b) is easily verified and 
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(c), (e) follow immediately from (a), (b). We see also that in (d) we have 

dim Z + dim G,, = dim Z' +dim Jo+ m . It is clear that dim Jo-dim G,, + m = 

p(dim Vk -p)  + m = p Ch: ,,=, dim Vhu . 
Thus, dim Z - dim Z' = p C, : ,,=, dim V,,, . On the other hand, we have 

dim E, - dim E,, = 2p Ch: ,,=, d, and (d) follows. 

Lemma 12.6. If V # 0 ,  then A, = U, ,,,,A,, ,, . 

Let x E A,. Then x is nilpotent, and hence by 1.8(b) there exists an x-

stable flag q5 = (V = V0 2 V' 3 . . . 2 V" = 0 ) .  Since V # 0 ,  we may assume 

that V' # V .  By the definition of a flag (1.4), there is a k E I such that 

V: # V, and V: = V j  for all j # k . Let p > 0 be the codimension of V: in 

V,. Let h E H be such that h'' = k Then by 1.8(a), we have xh(Vhl) c V: 

for all h E H such that h" = k . : ,..=, SOThus, we have ZheH xh(Vh,)c V: 

that x E 

12.7. We now prove Theorem 12.3. (Compare [L3, 8.71.) We may assume 

that V # 0 and that the theorem is already proved for I-graded vector spaces 

of strictly smaller dimension than that of V .  From 12.5 and the induction 

hypothesis we see that A,, ,,, has pure dimension equal to dimE,/2 when-

ever p > 0 .  Now using 12.6, we see that A, has pure dimension equal to 

dim E,/2 . Finally, from this it follows that A,, ,, , (which is open in A, ) has 

pure dimension equal to dimE,/2. Theorem 12.3 is proved. 

12.8. Let V E 57" and let i2 be an orientation for our graph. Note that E,, ,is 

a lagrangian subspace of E, complementary to the lagrangian subspace E, ,n. 
Hence the symplectic form ( , ) defines a nonsingular pairing E,, ,x EV, + 

k .  

This shows in particular that E, is naturally the cotangent bundle of E,, ,. 
We have the following result (compare [L3, 9.31): 

(a) If x' E Ev,,and xu E E,, then we have tyi(x1+ x") = 0 for all i E I 

if and only if x" is orthogonal with respect to ( , ) to the tangent space to 

the G,-orbit of x' (regarded as a vector subspace of E,, ,). 

Indeed, that tangent space is the set of all vectors x E E,,, such that for 

some a E gl, we have x = [ a ,  x'] . The orthogonal to that tangent space is 

the set of all xu E E,,ii such that for all a E gl, we have ( [a ,  x'] , xu) = 

0 , or equivalently (see 12.1 (a)) CiEltr(ai tyi(xl + xu) )  = 0 , or equivalently 

tyi(xl+ x'') = 0 for all i . 

Theorem 12.9. A, is a Lagrangian subvariety of E, . 

The proof is based on the inductive construction of irreducible components 

of A, which has been already used in the proof of 12.3; the details will be 

given elsewhere. This result is not used in the sequel. 

12.10. Let Z ( V )  be the Q-vector space consisting of all constructible functions 

in M(A,) that are constant on the orbits of G, on A,. 
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Now let V ,  V' , V" be as in 3.1, and let f '  E %(v') , f"E %(v") . 
We define a function f '  * f" E %(v) by imitating the construction of 3.1. 

Consider the diagram (analogous to 3.1 (a)): 

where the notations are as follows. 

F" is the variety of all pairs ( x ,  V) where x E A, and V is an x-stable 

I-graded subspace of V such that V E Z;=,, . 
F' is the variety of all quadruples (x, V , R" , R') where (x, V) E F" , R" 

is an isomorphism V" E V (in 'Y ) and R' is an isomorphism V' E V/ V (in 

y ). 
I I

We have p,  (x, V, R" , R') = (x' , x") where xhR;, = RhUxh: v;, + V h , , / b l  
I' I' ' I

and xhR;, = Rht1xh: Vh, + b,,for all h E H .  

P,(x, V ,  R", R') = (x ,  V) ,  P ~ ( x ,  V) = X. 
Note that p, is a G,, x G,,,-principal bundle and p3 is proper. (Unlike the 

situation in 3.1, p,  is not in general smooth.) 

Let f, E M(A,, x A,,,, be given by f,(x' , x") = f l(x ')  f"(xl') . Then 

there is a unique function f3 E M(F") such that p;f, = p i  f, ; by definition, 

f' * f"= (~ , ) ! ( f , ) .  

Next we note that given u E N' , the vector spaces %(v) for various V E 

can all be identified in a coherent way with a single vector space %(u) (by 

the invariance condition on the functions considered). The operation above 

becomes a pairing %(ul) x %(ul') + %(v) denoted (f', f")+ f * f" . Let 

% = $"%(v) . The operation * makes % into an associative Q-algebra. (It 

is a quotient of an algebra like L ( R )  in 10.18 defined for a graph with the 

same vertices as our graph, but with twice as many edges, in which H is an 

orientation.) 

Let i E I ;  let p be such that p( i )  = 1 and p ( j )  = 0 for j # i .  Then %(p) 

is one dimensional, with a canonical basis element Fi corresponding to the 

function on (0) with value 1 . Let Gobe the subalgebra of % generated by 

the elements Fi ( i  E I ) .  Then Go= $"Z O ( u )  where Z O ( u )  = %(u) nG o .  

Lemma 12.11. Let i # j in I and let N be the number of edges in our graph 

that join i ,  j . Then the following identity holds in the algebra Go: 

Let V E 55'" be such that dimVi = 1 ,  dimVj = N + 1 ,  and dimVk = 0 for 

all other k . Let H' = {h E H J ~ 'i ,  h" = j) .= 

In our case, 

e(h)xhxz= 0 and xx,xh2= 0 for all h, , h, E H' 
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(The first condition is ~ ( x )0 ; the second one is the nilpotency condition. = 

The condition rl/l(x)= 0 is a consequence of the nilpotency condition.) 

Let x E A,. Let Wl be the subspace of V, generated by the images of 

x, : V, -V, for various h E H I .  Let W2 be the subspace of V, given by the 

intersection of the kernels of xx: V, - V, for various h E H I .  From (a) we 

have Wl c W2. 

For each p E [0,  N + 11, let Fp(x) be the variety of all codimension p 

subspaces W of V, such that Wl c W c W2. 
The identity to be proved can be rewritten in the following form: 

for all x E A, . Let dl  , d2 be the codimension of Wl , W2, respectively. 

Now Fp(x) is empty unless d2 5 p 5 d l  , in which case it is a Grassmannian 

with Euler characteristic x(FP(x)) = ($1:) . If d l  > d 2 ,  we have the identity 

and (b) follows. 
It remains to show that we always have Wl # W2 . We have a diagram 

where the middle term is a direct sum of copies of Vl , one for each h E 

H'; the second arrow is defined by y + (xx(y)); the third arrow is (zh) -
ChEHl . This diagram is a complex (by (a)), which is acyclic except &(h)xh(zh) 

possibly at the middle position. It follows that dim(V,/ W2) 5 N - dim Wl so 

that dim W2 - dim Wl 2 dim Vj -N = 1 ; in particular, we have Wl # W2 and 

the lemma is proved. 

12.12. From 12.1 1 we see that there is a unique homomorphism of Q-algebras 

y :  u- +Gothat takes F, to F, for each i E I .  ( u- is as in 10.15.) 

The following result provides a description of the algebra u- parallel to that 

in 10.18, but without reference to any orientation of our graph. 

Theorem 12.13. y is an algebra isomorphism u- E Go. 

By the definition of u- and G o ,  we have that y is surjective. To prove that 

y is injective, we choose, as we may, an orientation SZ for our graph that has 

no cycles (see 10.20). 

We define an algebra homomorphism % + A(SZ) as follows. Let V E 

P . Then Ev,a is naturally a subspace of A, . (Any element of E,:, is 

nilpotent since SZ has no cycles; any element x E E,,* satisfies automatically 

the equations q x )  = 0 by the definition of an orientation.) Hence restriction 
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of functions defines a linear map G ( v )  +A ( V ,  SZ) . It is obvious that this is 
compatible with the operations * . These maps then define the required algebra 

homomorphism G +A'(SZ) . 
Consider the composition of homomorphisms 

u- +Go+G +A ( Q )  

where the first one is y , the second one is the inclusion, and the third one has 
been just constructed. This composition coincides with the homomorphism 

(of 10.20, 10.19(a)). (It is enough to check that these coincide on the generators 
F, , which is obvious.) Hence the kernel of y is contained in the kernel of the 
homomorphism 10.20. The last kernel is zero, and hence so is the kernel of y . 
The theorem is proved. 

12.14. Let X be an irreducible component of A, where V E Z;: . We define 

a linear form Tx: $(v) + Q as follows. Under the canonical identification 

G(v)Z %(v),  the subspace $(v) of %(v) is identified to a subspace $(v) 

of %(v). We can find an open dense subset Xo of X such that any function 

f E &(v) is constant on X u .  (Such an open set exists separately for each f 
since f is constructible; one exists for all f simultaneously since the vector 

space $(v) is finite dimensional.) We then define T,( f )  to be the (constant) 
value of f on Xo . 

Let us denote by Z,, the set of irreducible components of Av . This set is 
independent of the choice of V as long as V E Z;: . 

By associating to each f E G 0 ( v )  the function X + T,( f ), we thus obtain 

a linear function from ;i?,(v) to the vector space of all functions Z,, +Q . 
It may be conjectured that this is an isomorphism. This would imply that the 

Y-homogeneous part of u- has dimension equal to the number of elements in 
Z,, . (This last fact is actually true for graphs of type A,  D , E or of affine type 
A ,  as can be seen from 14.2 and 15.6.) 

12.15. In this section we will show that the constructions in this section are 
essentially independent of the choice of the function E . Let 8': H + k* be 
another function such that ~ ' ( h )  + ~ ' ( x )= 0 for all h E H.  Let ( , )I, I,Y~!, 

A(, be defined as ( , ), y i ,  A, but in terms of E' instead of E . We can 

find a function 6 :  H + k* such that d(h) = 6(%),  6(h12 = for all ~ ' ( h ) ~ ( h ) - l  
~ E H .  

Then the linear map A: Ev + Ev given by A(x) = x' , x; = d(h)xh for all 

h E H is an isomorphism such that (A(x) , A(y)) = ( x ,  y)' for all x ,  y E E, , 
yi(A(x))= tyl!(x) for all x E Ev , and A(A(,) = A,. 

Moreover, the isomorphism A : A(, + A, induces a bijection on the sets 
of irreducible components that is independent of the choice of 6 .  To prove 
this, we may assume that E' = E SO that 6(h) = 6(h) = & I  . We can find 
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m : H -Z such that m(h) + m(x) = 0 , (- l )m(h)= d(h) for all h E H . Define 

A,: E, - E, for all t E k* by A,(x) = x' , xi = tmlh)xh.  Then A, defines 
a 1-parameter group of automorphisms of A, ; hence it induces the identity 
map on the set of irreducible components of A,. We have A _ ,  = A and our 
assertion follows. 

Clearly, we can always choose 6 so that ~ ( h )  = k 1  for all h E H .  

13.1. In this section we assume that k has characteristic zero. 
Let n :  X - Y be a proper morphism between smooth, connected varieties. 

Let S = n(X) , a closed irreducible subvariety of Y . 
Let f be the variety of all pairs ( x ,  t) where x E X and t E T,'(,)Y 

(cotangent space of Y at n(x))  are such that 5 is in the kernel of the canonical 

map T,'(,) Y - T; x induced by n . The map f - T*Y defined by (x, t)- t 
is a proper morphism. We denote its image by ? (a closed subvariety of T*Y ) 

and we denote 2 :  f + ? the resulting surjective map. 
For any L E 9 ( Y )  we denote by SS(L) the singular support (or character- 

istic variety ) of L . It is known that SS(L) is a closed lagrangian subvariety 
of T* Y . According to [KS], 

(a) SS(n , ( l ) )  is contained in ?. 

13.2. Let V E and let ( i ,  a) E S, . We fix an orientation R . Let n =-
'i,a: T , a  Ev,n be as in 1.5. By - 1.6, the definitions and results of 13.1 are + 

applicable to this n (with X = %,, and Y = E,, ,). In our case, T*Y may 

be identified with E, as in 12.8. Hence ? may be regarded as a subvariety of 
E, . With these notations, we have the following result. 

Theorem 13.3. (a) We have 

? = {ZE A, 1 z leaves stable some 4 E 5;,}. 

(b) One can identify 

f = {(z , 4) E A, x T,a14is z-stable} 

sothat themap 2 : f - ?  0f13.1 is ( z , $ ) - z .  

13.4. We begin with some preliminaries to the proof of 13.3. Let (x  , 4) E 97, 
where 4 = (V = V0 2 V1 2 . . . 2 vm= 0) is as in 1.4. Let bo be the subspace 

of gl, consisting of all f E gl, such that f (v') c V' for all I .  

Let b: be the subspace of bo consisting of all f E bo that are nilpotent as 
endomorphisms of eiVi . 

Let b+ be the subspace of E,,* consisting of all y E E,,, such that 4 is 

y-stable. 
Let b- be the subspace of EVshconsisting of all y E E,,Ti such that 4 is 

y-stable. 
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The tangent space at (x ,$) to qais naturally the kernel of the linear map 

given by (A, B) + C , Ch = Ah + xhBh'- BhlIxh (h E H) . 
We now define a linear map 

by D + ( D ,  E )  where E = (E,) is given by 

To see that this is well defined, we must check that, in the previous formula, 

E i :  Vi + Vi is nilpotent. Now 4 is x-stable and D-stable hence E-stable, so 

that E is nilpotent by 1.8(a). 

We now show that (b) is naturally the transpose of (a). 

First, E,,a is naturally the dual space of E,,, via the pairing induced by 

( , ) .  
The same pairing identifies b- with the dual space of E,,,/b+ . (It is easy 

to check that dim b- +dim b+ = dim E,, a and that (x,y) = 0 for all x E b+ , 
y E b- . Note that ( x ,  y)  = xi,,tr Ti where Ti = x h ; h , , = ixhyz. NOW $ is 

x-stable and y-stable hence T-stable, so that I;. is nilpotent by 1.8(a). Thus 

tr I;.= 0 ; hence (x,y) = 0 .) 

Note also that b: is naturally the dual space of gl,/bo via the pairing induced 

by the pairing gl, x gl, + C , A , A' -.tr(AA1). 
It remains to verify the following identity: 

(A, D) + tr(BE) = ( C , D) 

for any A E E,,, , B E gl, , D E b- where C E E,,* is defined in terms of 

A ,  B as in (a) and E E gl, is defined in terms of D as in (b). Thus, we must 

verify the identity: 

But this is clear. 

Thus we have proved that (b) is the transpose of (a). It follows that 

(c) the cotangent space at ( x ,  4) to qais naturally the cokernel of the 

linear map (b). 

13.5. We now prove Theorem 13.3. Note that the cotangent space at x to 

Y = E,, ,is naturally E,, (see 12.8) and the linear map T* n induced by n 

from the cotangent space at x to Y = E,. ,to the cotangent space at ( x ,  4)-
to X =q,,is given by y + T*n(y)= (y , 0) modulo the image of 13.4(b). 
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The condition that y E E,,a satisfies ~ * n ( y )  = 0 is therefore that y E b-

and Ch: h, ,= i  c(h)(xhyz+yhxz)= 0 for all i E I .  Since xhxz = 0 and yhyz = 0 

for all h we see that the previous condition is equivalent to 

4 is y-stable and y/,(x +y) = 0 for all i E I. 

For y E E,,fi, the conditions (a), (b) below are equivalent: 

(a) is y-stable , 

(b) x +y is nilpotent and it leaves 4 stable. 

Clearly, if (b) holds then (a) holds (since 4 is x-stable). If (a) holds then 

certainly 4 is (x  + y)-stable and from this we see using 1.8(a) that x + y is 

nilpotent. Thus the equivalence of (a),(b) is established. 

We now see that y E Ev,Ti satisfies T*n(y) = 0 if and only if 

x +y E A, and 4 is (x  +y)-stable. 

Theorem 13.3 follows. 

Corollary 13.6. For any L E P,,Q,the singular support SS(L) is a union of 

irreducible components of A, . 

By definition, we can find n as in 13.2 such that some shift of L is iso- 

morphic to a direct summand of some n , ( l ) .  We therefore have SS(L) c 
S S ( n ! ( l ) ) .  By 13.l(a), we have ~ ~ ( n , ( l ) ) ' c  y and by 13.3(a) we have y c 
A,. From these inclusions we deduce that SS(L) c A,. Now SS(L) is a 

closed lagrangian subvariety of E,. Hence it has pure dimension equal to 

dim(E,)/2. On the other hand, according to 12.3, A, also has pure dimension 

equal to dim(E,)/2. The corollary follows. 

13.7. One may hope that the following two statements might be true: 

(a) for graphs of type A ,  D ,  E , the singular support of any L E P,, is 

irreducible, and 

(b) for general graphs, there is a unique 1 - 1 correspondence L + X L  between 

9,,, and the set of irreducible components of A, such that X L  c SS(L) . 
Statement (a) for type A is closely related to the expected irreducibility of 

singular supports for Schubert varieties of GL(n) . 

13.8. We consider an example. We take I = { i ,  j } ,  H = {h , ,  h,, h,,  h4) ,  

with h', = hi = i ,  h ' , '=  h t  = j ,  h ,  = h,, h, = h,. We take Q = { h i ,  h,), 

&(h i )= ~ ( h , )= 1 ,  c(h3) = c(h4)= -1 . We take V such that V, = V, = V is 

a two-dimensional vector space. We identify E, with the set of all quadruples 

(A, B ,  A' ,  B') of endomorphisms of V , E,,, with the subspace of E, de-

fined by A' = B' = 0 and A, with the subspace of E, defined by the equations 

AA'+ BB' = 0 ,  A'A+B'B = 0 ,  and by the condition that AA' , AB' , BA' , BB' 

are nilpotent. 
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Then g,,,consists of 6 perverse sheaves L,  , . . . , L6 with supports of 
dimensions 0 ,  4 ,  5 ,  5 ,  8 ,  8 respectively. ( L 3 ,  L4 have different supports but 
L, ,  L6 have the same support.) The corresponding local system on an open 
dense part of the support is trivial for L ,  , . . . , L5 and nontrivial for L6 . 

Now A, has six irreducible components X ,  , . . . , X6 . Notations can be 
arranged so that the following holds: SS(Lj) = Xj for j = 1, . . . , 5 and 

SS(L6)= X, uX6 . Note also that X6 is the closure of the conormal bundle of 
a 7-dimensional irreducible submanifold of E,,, . Hence 13.7(b) holds in our 

example. 

14.1. In this section we assume that our graph is of type A,  D or E ; in par- 
ticular, there is at most one edge joining two vertices. We fix an orientation R 

for the graph. Let V E Y . 

Proposition 14.2. (a) Any element x E E, such that y/,(x) = 0 for all i E I is 
automatically nilpotent. 

(b) The irreducible components of A, are the closures of the conormal bundles 
of the various G,-orbits in E,, ,. 

Assume that (a) holds. Then, using (a) and 12.8(a) we see that A, is precisely 
the union of the conormal bundles of the various G,-orbits in E,,, . Since 
there are only finitely many such orbits (Gabriel's theorem) we see that (b) 
holds. It remains to prove (a). The proof of (a) has much in common with that 
in [L2, 5 101. 

We can write uniquely x = y + z where y E E,,, and z E E">.Q 

- .  We 
may regard (V, y) as a representation of our oriented graph. Writing this 
representation as a direct sum of indecomposable representations and using 
[L2, 4.9(c)] we see that there exists a direct sum decomposition V = vP 
where each vPE Y is y-stable (i.e., (vP, y)  is a representation of our oriented 
graph) and such that that any morphism from the representation (vP , y)  to the 

representation (vp' , y) is zero whenever < p . 
We have a direct sum decomposition 

, I 
P P' , vil1).E,, ,= $ E;',: where E,', ,= $H O ~ ( V ~ ~  

P , P ' E [ ~, u l  h ER 

Similarly, 

Ev , ,- = $ EP'L where E:$ , v$).V ,  R = $H O ~ ( V $ .  

P , P ' E [ ~> u 1  hEi3 
I 

As in [L2, 10.41, the subspace @,,,,,, E$',% of E, is contained in the tangent 
space T, to the G,-orbit of y . 

Since yi(y + z)  = 0 for all i , we see from 12.8(a) that (z  , Tv)= 0 .  Hence 

( Z  ' ePlp = 0 .  But the annihilator in E,,ii of E$:: 
, 

under. ~$5)  
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E::$.  Hence we have z E If we denote ( , ) is clearly @,,,. @,,,. E::;.  

Viq)= @, : p>q VP , we have 

forall h e n ,  ~ E [ O ,  v - 11 and 

yh(v;)) cv;! 

for all h E R , q E [0, v] . 
Now y is certainly nilpotent as an element in E, (since y E E,, and our fi  

graph is a tree); y satisfies the definition of nilpotency in 1.7 with N = 111. 

By 1.8(b) applied to y and VP we see that the filtration (d) can be refined to 

a flag q!J in V that is stable under y . 
Then 4 is automatically z-stable. Indeed, let 'V be a member of this flag. 

We have v ( ~ )'V 3 v (~+ ' )  - From (e) it follows that for some q E [0, v 11. 

Z,('V,.) c v;:" ; hence zh( 'vh , )  c 'v,., for all h E a ,which shows that q!J is 

z-stable. Now q!J is stable under y and under z , and hence it is stable under 

x = y + z . Using now 1.8(a), we see that x is nilpotent. The proposition is 

proved. 

15.1. In this section we assume that n 2 2 ,  I = Z l n  , and that H consists of 

the arrows 

(a) i - j  w i th i ,  j ~ I , i - j = l ,  

-
by definition, the involution : H - H interchanges i - j and i + j ;  if 

h = ( i  - j )  , we set h' = i , h" = j ; if h = (i  t j )  , we set h' = j , h" = i . Let 

l2 be the subset of H consisting of the arrows (a). 

Thus our graph is an affine Dynkin graph of type A, and R is an orientation 

of it. We shall take ~ ( i  - j )  = 1 , e(i t j )  = -1 . 
The purpose of this section is to give an explicit combinatorial parametriza- 

tion for the set of irreducible components of A, for any V E 7. 

15.2. Let k' 5 k be two integers. We define ~ ( k '  , k) E 7to be the k-vector 

space with basis e, (r  E [k' , k]) , I-graded by the requirement that er has 

degree i E I where r - i (mod n) . Let x ( k l ,  k )  E Ev(X., be defined by 

e, - er-, for all r E [k' , k] , where ek,- ,  is interpreted as zero. It is clear 

that ( ~ ( k '  , k)  , x ( k l ,  k) )  is an indecomposable representation of our oriented 

graph, with x ( k l ,  k )  nilpotent; the isomorphism class of this representation 

does not change when k' , k are simultaneously translated by a multiple of n . 
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Conversely, if (V, x) is an indecomposable finite-dimensional representation 

of our oriented graph, with x E E,,, nilpotent, then it is isomorphic to a 

( ~ ( k ', k)  , x ( k l ,  k))  as above; moreover, (k' , k)  are uniquely determined up 

to simultaneous translation by a multiple of n . 
Let Z be the set of all pairs (k' 5 k) of integers defined up to simultaneous 

translation by a multiple of n ; let 2 be the set of all functions Z + N with 

finite support. 

It follows that, given V E T,the set of G,-orbits on the set of nilpotent 

elements in E,,, is naturally indexed by the subset of 2 consisting of all 

functions f :  Z + N with finite support such that 

f ( k l ,  k ) # { r k l < r <  k , r = i  ( m o d n ) } = d i m V L  

k ' l k  

for all i E I ;  the sum is taken over all k' 5 k up to simultaneous translation 

by a multiple of n .  This indexing is obtained by attaching to a nilpotent 

element x E E,, ,the following function f : we write (V, x )  as a direct 

sum of indecomposable modules and f ( k l ,  k)  is the number of summands 

isomorphic to ( ~ ( k ', k) , x ( k l ,  k))  . In particular, 

(a) G, has only finitely many orbits on the set of nilpotent elements in E,, ,. 
We shall denote by 5 the G, orbit corresponding to f E 2,. 

15.3. An element f E 2, is said to be aperiodic if it satisfies the following 

condition: for any k' 5 k , not all integers f ( k l ,  k ) ,  f (k l  + 1 ,  k + I ) ,  . . . , 
f ( k l + n - l , k + n - 1 )  are > 0 .  

15.4. For any r E I ,  let End,(V) be the vector space of all linear maps T :  V + 

V such that T(Vi) c Vi+, for all i E I .  

We may identify E,, ,(resp. E, ,z) with End-, (V) (resp. End, (V) ) . (To 

x E E,,, we associate the T such that T(v) = (v) for all i and all 

v E Vi ; to z E E,, 3 we associate the T such that T(v) = (v) for all i z ~ + , + ~  

and all v E V, .) 

The following statement is obvious. 

(a) Let x E E,,, , z E E v , a ,  and let T ,  S be the corresponding elements 

in End-, (V) and End, (V) . Then x is nilpotent as an element of E,, ,if and 

only if T is nilpotent as an endomorphism of V ; z is nilpotent as an element 

of Ev,Ti if and only if S is nilpotent as an endomorphism of V .  

The following statement is easily verified. 

(b) Let x ,  x' E E,, ,be nilpotent elements, let T ,  T' be the corresponding 

elements of End-, (V) , and let f , f' be the corresponding elements of 2, . 
Assume that there exists S E Endl (V) that is invertible as a linear map V + V 

such that T S  = ST'. Then f (k' , k )  = fl(k' - 1, k - 1) for all k' < k . 

Proposition 15.5. Let f E 2,. The following two conditions are equivalent. 

(a) The conormal bundle of @fconsists entirely of nilpotent elements in E, . 
(b) f is aperiodic. 
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If x E E,, fl and z E E,, Ti then 

yi(x + Z)= - for all i E I .x ,+ l+ i~ i+ lc i~ ~ ~ ~ - ~ x ~ + ~ - ~  

Using 12.8(a), we see that condition (a) is equivalent to the following condi- 
tion: 

(c) Let x E Bf. Then for any z E Ev,Tisuch that 

x i + l + j z i + l c i  = z j c i - l x i -+ i - l  

for all i E I ,  x + z is nilpotent. 
For x and z as in (c), the condition that x + z is nilpotent is equivalent 

to the condition that z is nilpotent (since x is known to be nilpotent). Using 
15.4(a), we see that (c) is equivalent to the following condition: 

(d) Let x E Bfand let T be the corresponding element of End-, (V) . Then 
any S E End,(V) such that T S  = S T  (as endomorphisms of V )  is nilpotent 
(as an endomorphism of V ). 

Let x ,  T be as in (d) and assume that S E Endl(V) commutes with T 

and is not nilpotent. Consider the canonical decomposition V = V' $ V" such 
that v', V" are S-stable, and S is invertible on V' and nilpotent on V" . 
Then V' # 0 .  The previous decomposition is automatically compatible with 
the I-grading (since S E Endl(V)); moreover, V' and V" are T-stable (since 
T S  = S T  ). Hence our decomposition is a decomposition of (V, x) as a direct 

sum of two representations of our oriented graph. Let f E zvl, f"E zvll,be 

attached to these two representations as in 15.2. It is clear that f = f' + f". 
Hence to prove that f is not aperiodic it is enough to show that f '  is not 
aperiodic. Thus we can assume that V = V' so that S : V -,V is invertible. 
Applying 15.4(b) (with T' = T ) we see that f (k' , k)  = f (k' - 1, k - 1) for 
all k' 5 k . This shows that f is not aperiodic. Thus we have proved that if 
(d) does not hold, then (b) does not hold. 

We now show that if f is not aperiodic, then (d) does not hold. Since f is 

not aperiodic, we can find k' 5 k and a direct sum decomposition V = V' $V2$ 

. .$v"+' of the representation (V, x) of our oriented graph such that the lth 
summand is isomorphic to the representation ( ~ ( k '  +1, k +1), x(k l+1, k +1)) 
(see 15.2) for 1 = 1, 2 ,  . . . , n . It is then clear that there exists a linear map 

S E End, (V) such that S = 0 on v"" and S is an isomorphism of the vector 

space V' $ V2$ . . . $ V" onto itself, commuting with T . This shows that (d) 
does not hold. The proposition is proved. 

Corollary 15.6. For any f E Z,, let gfbe the conormal bundle of Bf; let gf 
be the closure of 

-
gf. 

Then f +g is a 1 - 1 correspondence between the set of aperiodic elements 

in Z, and the set of irreducible components of A,. 

Let X be an irreducible component of A,. The image of X under the 

canonical projection E, + Ev,fl (with kernel E,,Ti ) is denoted X' . It is 
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contained in the set of nilpotent elements of E",, since X consists of nilpotent 

elements. Moreover, it is G,-stable. Hence it is the union of finitely many G,-

orbits. Let @f, By 12.8(a), X is contained in the , . . . , @' be these orbits. 

union %;I u s. . u %A . Each of these conormal bundles is irreducible of the same 

dimension as X . It follows that X must be equal to the closure of one of these 

conormal bundles; hence X = pi for some f that , by 15.5, is necessarily 

aperiodic. Conversely, if f E 2, is aperiodic, then any x E gf is nilpotent, 

by 1 5.5, and satisfies q ( x )  = 0 for all i , by 12.8(a); thus, gfis contained in 

A,, and hence its closure is contained in A,. Being irreducible of the correct 

dimension, it is an irreducible component of A,. This completes the proof. 

16.1. In this section we assume that we are given a finite cyclic group C and 

an action of C on our graph such that the following property is satisfied. If 

c E C fixes an edge, then it fixes both ends of that edge; if an edge and its image 

under c E C have the same end points then that edge is fixed by c . 
This induces actions of C on I and H which are compatible with the maps 

1.1(a), (b), (c) ; moreover, h , are never in the same C-orbit on H . 
Let P be the set of orbits of C on I .  For p E P let d, be the number 

of elements in p . Given two distinct orbits p ,  q in P we denote by n,, the 

number of elements h E H such that h' E p and h" E q . Clearly, n,, = n, 

is divisible by both d, and d, . Hence the matrix 

(a) ( a p g ) p , g p  given by a,, = 2 and a,, = -dp-'n,, (for p # q )  is a 

symmetrizable generalized Cartan matrix. 

16.2. Note that any nonsymmetric Cartan matrix of affine type can be obtained 

by the procedure of 16.1 starting from an extended Dynkin graph of type A ,  D 
or E and a suitable cyclic group acting on it. Consider the following extended 

Dynkin graphs with a faithful action of C of the order indicated by a left 

superscript: 

(The right superscript 1 ,  2 ,  2 3 indicates the number of nontrivial orbits of 

C on the set of vertices.) 

The corresponding Cartan matrices are (with the notations in [K, p.44,45]) 

respectively: 

16.3. We want to sketch the way in which the results of this paper should be 

extended to the case of the quantized enveloping algebra U- corresponding to 

the Cartan matrix 16.2(a). 
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Let R be an orientation of our graph that is compatible with the C-action. 

(Such R always exists.) 

Let T ( C )  be the category of finite-dimensional I-graded k-vector spaces V 

with an action of C that have the following properties: if c E C and i E I 
then cV, c V,(,) ; if in addition, c(i) = i ,  then c :  Vi + Vi is the identity. 

Let V E T ( C )  be such that V E , when the C-action is forgotten. Note 
that we have a natural action of C on E, preserves the subspace E,,, . 

Let S, ,be the set of all pairs (p,  a) where p = (p, , p,, . . . , py,) is a 

sequence bf elements of P and a = (a, , a, ,  . . . , a,) is a sequence of integers 

,,,, El0 such that 2 a, = v(i) for all i E I .  

Let (p , a) E S, , ,. A C-flag of type (p , a) in V is, by definition, a sequence 

4 = (V = VO 3 V' 3 . . . 3 vrn= 0) of I-graded C-stable subspaces of V such 

that, for any 1 = 1 ,  2 ,  . . . , m , the graded vector space v'-'/v' is zero in 

degrees i f p, and has dimension al  in degrees i E p, . 
As in 1.4, we say that 4 is x-stable (where x E E, ) if V' is x-stable for all 

h E H and all I = 0 ,  1 ,  . . . , m .  Let %,, be the variety of all C-flags of type 

(p ,  a) in V .  

Let c,a be the variety of all pairs (x  , 4) such that x E Ev,,and 4 E %,, 
is x-stable. -

We denote by n,, ,: 3,,-t E,, ,the first projection. 

,),(E,E 91)(,)!,(n ,=,; 
is C-equivariant in a suitable sense. It can be decomposed in a direct sum 

of summands L [ d ]  where the L are C-equivariant perverse sheaves that are 

simple (as equivariant perverse sheaves, but not necessarily as perverse sheaves 

without C-action). The set of isomorphism classes of the various L that ap- 

We set Lp ,,, . This is a semisimple complex which 

pear in this way is denoted Pv,,, 
continue as in the case of trivial C , and it should lead to a canonical basis of 

U- indexed by the disjoint union of the sets P,,,, ,(with V r ~ n n i n g  over a 
-

set of representatives for the isomorphism classes in 7' ). 
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