THE PETER-WEYL THEOREM FOR CLASSICAL AND QUANTUM $\mathfrak{s l}_{N}$

DAVID JORDAN (LIVE TEXED BY STEVEN SAM)

Theorem 0.1 (Peter-Weyl). Let G be a simply-connected semisimple complex algebraic group. Then

$$
\mathcal{O}[G]=\bigoplus_{V} V^{*} \boxtimes V
$$

as (G, G)-bimodules, and where the sum is over all irreducible representations of G.
Let H be a Hopf algebra. If H is finite dimensional, then H^{*} is also a Hopf algebra by dualizing all operations from H. We run into issues if H is infinite-dimensional, but we can find a fix. For a finite-dimensional H-module V, an element $v \in V$, and $f \in V^{*}$, define a linear functional on H by $c_{f, v}(u)=f(u v)$. Call these linear functionals matrix coefficients.
Proposition 0.2. (1) $c_{f, v} c_{g, w}=c_{g \otimes f, v \otimes w}$
(2) For a representation V, let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis and $\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$ be a dual basis for V^{*}. Then $\Delta\left(c_{f, v}\right)=\sum_{i} c_{f, e_{i}} \otimes c_{e^{i}, v}$
(3) H^{0} has an antipode $\bar{S}=S^{*}$.
(4) Suppose $\varphi: V \rightarrow W$ is a map of H-modules. Then $c_{f, \varphi v}=c_{\varphi^{*} f, v}$.

The algebra of matrix coefficients is the subalgebra H^{0} of H^{*} spanned by all matrix coefficients.

Recall that H^{*} is an $H-H$-bimodule as follows. For $f \in H^{*}, a, b \in H,(a \otimes b) f$ is the function satisfying:

$$
(a \otimes b) f(u)=f(S(a) u b)
$$

This equips H^{0} with a bimodule structure by restriction.
Proposition 0.3 (Peter-Weyl for semi-simple Hopf algebras). Suppose that H is semisimple, i.e., every finite-dimensional representation is completely reducible. Then we have the following decomposition of H^{0} as a $H-H$-bimodule.

$$
H^{0} \cong \bigoplus_{X} X^{*} \boxtimes X
$$

where the sum is over all irreducible representations X.
Proof. Define

$$
c_{V^{*}, V}=\mathbb{C}\left\{c_{f, v} \mid f \in V^{*}, v \in V\right\} \subset H^{0} .
$$

We have a map

$$
\begin{aligned}
\iota_{X}: X^{*} \boxtimes X & \rightarrow c_{X^{*}, X} \\
f \boxtimes v & \mapsto c_{f, v}
\end{aligned}
$$

We claim that $\bigoplus_{X} \iota_{X}$ is an isomorphism. Clearly each ι_{X} is an inclusion. This map $\oplus_{X} \iota_{X}$ is $H \times H$-linear, and so $\operatorname{Im}\left(\iota_{X}\right) \cap \operatorname{Im}\left(\iota_{Y}\right)=0$ for all distinct X and Y appearing in the sum, since they are non-isomorphic simple subrepresentaitons.

To show surjectivity, let V be a finite-dimensional H-module. We have a natural map $\iota_{V}: V^{*} \boxtimes$ $V \rightarrow H^{0}$, and we need to show that $\operatorname{Im}\left(\iota_{V}\right) \subset \oplus_{X} \operatorname{Im}\left(\iota_{X}\right)$ over all simple X 's.

Decompose $V=\bigoplus_{i} X_{i}$ into its irreducible components. Let $j_{X_{i}}: X_{i} \rightarrow V$ be the inclusion given by the direct sum, and let $\pi_{X_{i}}: V^{*} \rightarrow X_{i}^{*}$ be the dual map. Similarly, let $j_{X_{i}^{*}}: X_{i}^{*} \rightarrow$ V^{*} and $\pi_{X_{i}^{*}}: V \rightarrow X_{i}$ be the maps given by the decomposition $V^{*}=\oplus X_{i}^{*}$ We have two maps $1 \boxtimes j_{X_{i}}: V^{*} \boxtimes X_{i} \rightarrow V^{*} \boxtimes V$ and $\pi_{X_{i}} \boxtimes 1: V^{*} \boxtimes X_{i} \rightarrow X_{i}^{*} \boxtimes X_{i}$.

Write any pure tensor $f \boxtimes v \in V^{*} \boxtimes V$ in terms of its irreducible components:

$$
f=\sum_{i} j_{X_{i}^{*}}\left(\pi_{X_{i}}(f)\right), \quad v=\sum_{i} j_{X_{i}}\left(\pi_{X_{i}^{*}}(v)\right) .
$$

Then, we have:

$$
\begin{aligned}
\iota_{V}(f \boxtimes v) & =\sum_{m, n} j_{X_{m}^{*}}\left(\pi_{X_{m}}(f)\right) \boxtimes j_{X_{n}}\left(\pi_{X_{n}^{*}}(v)\right) \\
& =\sum_{m, n}\left(\pi_{X_{m}}(f)\right) \boxtimes \pi_{X_{m}^{*}} j_{X_{n}}\left(\pi_{X_{n}^{*}}(v)\right),
\end{aligned}
$$

applying Proposition $0.2(4)$. Each term in the sum for which $X_{m} \not \approx X_{n}$ will be zero, since $\pi_{X_{m}^{*}} j_{X_{n}}=$ 0 , in that case. Thus, we have:

$$
\operatorname{Im}\left(\iota_{V}\right) \subset \bigoplus \operatorname{Im}\left(\iota_{X_{i}}\right)
$$

as desired.
Recall that finite-dimensional representations of $\mathbf{S L}_{N}$ are tensor generated by the defining representation $V_{\omega_{1}}=\mathbb{C}^{N}$. Let $\left\{e_{1}, \ldots, e_{N}\right\}$ be the standard basis. This implies that $U\left(\mathfrak{s l}_{N}\right)^{0}$ is generated by $V_{\omega_{1}}^{*} \boxtimes V_{\omega_{1}}$. In other words, $U\left(\mathfrak{s l}_{N}\right)^{0}$ is generated by $a_{j}^{i}=c_{e^{i}, e_{j}}$.

Proposition 0.4.

$$
U\left(\mathfrak{s l}_{N}\right)=\mathcal{O}\left(\mathbf{S L}_{N}\right)=\mathbb{C}\left[a_{j}^{i} \mid 1 \leq i, j \leq N\right] /(\operatorname{det}-1) .
$$

Proof. The fact that the a_{j}^{i} commute follows from the fact that the tensor product of representations is symmetric, i.e., we have an isomorphism of G-modules:

$$
\begin{aligned}
& \tau: V \otimes V \rightarrow V \otimes V, \\
& a \otimes b \mapsto b \otimes a .
\end{aligned}
$$

We consider the image of a vector $v^{i} \otimes v^{j} \boxtimes v_{k} \boxtimes v_{l}$ under the maps $\tau^{*} \boxtimes \mathrm{id}$ and $\mathrm{id} \boxtimes \tau$. We compute:

The two images are equal in $U\left(\mathfrak{s l}_{N}\right)^{0}$ by Proposition 0.2 (4). Thus, we have $a_{k}^{i} a_{l}^{j}=a_{l}^{j} a_{k}^{i}$ for all i, j, k, l, so the algebra is commutative. We have a surjection $\mathbb{C}\left[a_{j}^{i} \mid 1 \leq i, j \leq N\right] \rightarrow U\left(\mathfrak{s l}_{N}\right)^{0}$.

Define

$$
\begin{aligned}
\chi: & \rightarrow V^{\otimes N} \\
z & \mapsto z \sum_{w \in \Sigma_{N}}(-1)^{\ell(w)} e_{w(1)} \otimes \cdots \otimes e_{w(N)} .
\end{aligned}
$$

We get maps $\chi^{*} \boxtimes \mathbf{1}:\left(V^{*}\right)^{\otimes N} \boxtimes \mathbf{1} \rightarrow \mathbf{1}^{*} \boxtimes \mathbf{1}$ and $\mathbf{1} \boxtimes \chi:\left(V^{*}\right)^{\otimes N} \boxtimes \mathbf{1} \rightarrow\left(V^{*}\right)^{\otimes N} \boxtimes V^{\otimes N}$. We apply these to an element $v^{N} \otimes \cdots v^{1} \boxtimes 1 \in\left(V^{*}\right)^{\otimes N} \boxtimes \mathbf{1}$.

Thus, applying Proposition $0.2(4)$, we get the equation det $=1$, and this gives a surjection $\mathbb{C}\left[a_{j}^{i} \mid\right.$ $1 \leq i, j \leq N] /(\operatorname{det}-1) \rightarrow \overline{U\left(\mathfrak{s l}_{N}\right)^{0} \text {. To prove injectivity, one passes to an associated graded (we }}$ omit the details).

This is most useful when we want to compute $\mathcal{O}_{q}\left(\mathbf{S L}_{N}\right):=U_{q}\left(\mathfrak{s l}_{N}\right)^{0}$. Again, $\mathcal{O}_{q}\left(\mathbf{S L}_{N}\right)$ is generated by the $a_{j}^{i}=c_{e^{i}, e_{j}}$. However, the a_{j}^{i} do not commute.

We have a braiding σ instead of τ. We introduce notation:

$$
\begin{aligned}
\sigma: V \otimes V & \rightarrow V \otimes V \\
v_{i} \otimes v_{j} & \mapsto \sum_{k, \ell} R_{i, j}^{k, \ell} v_{\ell} \otimes v_{k} .
\end{aligned}
$$

We can write R explicitly as

$$
R_{i, j}^{k, \ell}=q^{\delta_{i, j}} \delta_{i, k} \delta_{j, \ell}+\left(q-q^{-1}\right) \theta(i-j) \delta_{i, \ell} \delta_{j, k}
$$

where $\theta(t)$ is 1 if $t>0$ and 0 otherwise. If we try to find the relations among the a_{j}^{i} using the braiding instead of τ in (0.5), we consider instead:

Thus, applying Propositon 0.244, we conclude:

$$
\sum_{n, m} R_{n m}^{i j} a_{k}^{n} a_{\ell}^{m}=\sum_{o, p} a_{o}^{j} a_{p}^{i} R_{k \ell}^{p o} .
$$

We also have a map

$$
\begin{aligned}
\chi_{q}: 1 & \rightarrow V^{\otimes N} \\
1 & \mapsto \sum_{\sigma \in \Sigma_{N}}(-q)^{-\ell(\sigma)} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(N)}
\end{aligned}
$$

and a q-determinant:

$$
\operatorname{det}_{q}=\sum_{\sigma \in \Sigma_{N}}(-q)^{-\ell(\sigma)} a_{\sigma(1)}^{1} \cdots a_{\sigma(N)}^{N}
$$

Using χ_{q} in place of χ in diagram (0.6), we can present $\mathcal{O}_{q}\left(\mathbf{S L}_{N}\right)$ as the non-commutative polynomial ring generated by the a_{j}^{i} subject to the above relations and $\operatorname{det}_{q}=1$.

Example 0.8. $\mathcal{O}_{q}\left(\mathbf{S L}_{2}\right)$ is generated by a, b, c, d subject to the relations $a c=q c a, \quad a b=q b a, \quad c d=q d a, \quad b d=q d b, \quad b c=c b, \quad a d=d a+\left(q-q^{-1}\right) b c, \quad a d-q^{-1} b c=1$ This is a flat deformation of $\mathcal{O}\left(\mathbf{S L}_{N}\right)$.

