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Theorem 0.1 (Peter–Weyl). Let G be a simply-connected semisimple complex algebraic group.
Then

O[G] =
⊕
V

V ∗ � V

as (G,G)-bimodules, and where the sum is over all irreducible representations of G.

Let H be a Hopf algebra. If H is finite dimensional, then H∗ is also a Hopf algebra by dualizing
all operations from H. We run into issues if H is infinite-dimensional, but we can find a fix. For a
finite-dimensional H-module V , an element v ∈ V , and f ∈ V ∗, define a linear functional on H by
cf,v(u) = f(uv). Call these linear functionals matrix coefficients.

Proposition 0.2. (1) cf,vcg,w = cg⊗f,v⊗w
(2) For a representation V , let {e1, . . . , en} be a basis and {e∗1, . . . , e∗n} be a dual basis for V ∗. Then

∆(cf,v) =
∑

i cf,ei ⊗ cei,v
(3) H0 has an antipode S = S∗.
(4) Suppose ϕ : V →W is a map of H-modules. Then cf,ϕv = cϕ∗f,v.

The algebra of matrix coefficients is the subalgebra H0 of H∗ spanned by all matrix coeffi-
cients.

Recall that H∗ is an H −H-bimodule as follows. For f ∈ H∗, a, b ∈ H, (a⊗ b)f is the function
satisfying:

(a⊗ b)f(u) = f(S(a)ub).

This equips H0 with a bimodule structure by restriction.

Proposition 0.3 (Peter–Weyl for semi-simple Hopf algebras). Suppose that H is semisimple,
i.e., every finite-dimensional representation is completely reducible. Then we have the following
decomposition of H0 as a H −H-bimodule.

H0 ∼=
⊕
X

X∗ �X

where the sum is over all irreducible representations X.

Proof. Define
cV ∗,V = C{cf,v | f ∈ V ∗, v ∈ V } ⊂ H0.

We have a map

ιX : X∗ �X → cX∗,X

f � v 7→ cf,v

We claim that
⊕

X ιX is an isomorphism. Clearly each ιX is an inclusion. This map ⊕XιX is
H ×H-linear, and so Im(ιX) ∩ Im(ιY ) = 0 for all distinct X and Y appearing in the sum, since
they are non-isomorphic simple subrepresentaitons.

To show surjectivity, let V be a finite-dimensional H-module. We have a natural map ιV : V ∗ �
V → H0, and we need to show that Im(ιV ) ⊂ ⊕XIm(ιX) over all simple X’s.
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Decompose V =
⊕

iXi into its irreducible components. Let jXi : Xi → V be the inclusion
given by the direct sum, and let πXi : V ∗ → X∗i be the dual map. Similarly, let jX∗

i
: X∗i →

V ∗ and πX∗
i

: V → Xi be the maps given by the decomposition V ∗ = ⊕X∗i We have two maps
1 � jXi : V ∗ �Xi → V ∗ � V and πXi � 1: V ∗ �Xi → X∗i �Xi.

Write any pure tensor f � v ∈ V ∗ � V in terms of its irreducible components:

f =
∑
i

jX∗
i
(πXi(f)), v =

∑
i

jXi(πX∗
i
(v)).

Then, we have:

ιV (f � v) =
∑
m,n

jX∗
m

(πXm(f)) � jXn(πX∗
n
(v))

=
∑
m,n

(πXm(f)) � πX∗
m
jXn(πX∗

n
(v)),

applying Proposition 0.2(4). Each term in the sum for which Xm 6∼= Xn will be zero, since πX∗
m
jXn =

0, in that case. Thus, we have:

Im(ιV ) ⊂
⊕

Im(ιXi),

as desired. �

Recall that finite-dimensional representations of SLN are tensor generated by the defining repre-
sentation Vω1 = CN . Let {e1, . . . , eN} be the standard basis. This implies that U(slN )0 is generated
by V ∗ω1

� Vω1 . In other words, U(slN )0 is generated by aij = cei,ej .

Proposition 0.4.

U(slN ) = O(SLN ) = C[aij | 1 ≤ i, j ≤ N ]/(det−1).

Proof. The fact that the aij commute follows from the fact that the tensor product of representations
is symmetric, i.e., we have an isomorphism of G-modules:

τ : V ⊗ V → V ⊗ V,
a⊗ b 7→ b⊗ a.

We consider the image of a vector vi⊗ vj � vk� vl under the maps τ∗� id and id�τ . We compute:

(0.5) vi ⊗ vj � vk ⊗ vl
τ∗�id

tt

id�τ

**

aika
j
l = vj ⊗ vi � vk ⊗ vl vi ⊗ vj � vl ⊗ vk = ajl a

i
k

The two images are equal in U(slN )0 by Proposition 0.2(4). Thus, we have aika
j
l = ajl a

i
k for all

i, j, k, l, so the algebra is commutative. We have a surjection C[aij | 1 ≤ i, j ≤ N ]→ U(slN )0.
Define

χ : 1→ V ⊗N

z 7→ z
∑
w∈ΣN

(−1)`(w)ew(1) ⊗ · · · ⊗ ew(N).
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We get maps χ∗ � 1 : (V ∗)⊗N � 1→ 1∗ � 1 and 1 � χ : (V ∗)⊗N � 1→ (V ∗)⊗N � V ⊗N . We apply
these to an element vN ⊗ · · · v1 � 1 ∈ (V ∗)⊗N � 1.

(0.6) vn ⊗ · · · v1 � 1
χ∗�id

ww

id�χ

++
1 = 1 � 1

∑
w(−1)l(w)vN ⊗ · · · ⊗ v1 � vw(1) ⊗ · · · ⊗ vw(N)

∑
w(−1)l(w)a1

w(1) · · · a
N
w(N) = det

Thus, applying Proposition 0.2(4), we get the equation det = 1, and this gives a surjection C[aij |
1 ≤ i, j ≤ N ]/(det−1) → U(slN )0. To prove injectivity, one passes to an associated graded (we
omit the details). �

This is most useful when we want to compute Oq(SLN ) := Uq(slN )0. Again, Oq(SLN ) is gener-
ated by the aij = cei,ej . However, the aij do not commute.

We have a braiding σ instead of τ . We introduce notation:

σ : V ⊗ V → V ⊗ V

vi ⊗ vj 7→
∑
k,`

Rk,`i,j v` ⊗ vk.

We can write R explicitly as

Rk,`i,j = qδi,jδi,kδj,` + (q − q−1)θ(i− j)δi,`δj,k

where θ(t) is 1 if t > 0 and 0 otherwise. If we try to find the relations among the aij using the

braiding instead of τ in (0.5), we consider instead:

(0.7) vi ⊗ vj � vk ⊗ vl
σ∗�id

tt

id�σ

**∑
m,nR

ij
mnvn ⊗ vm � vk ⊗ vl

∑
o,pR

op
lk v

i ⊗ vj � vp ⊗ vo

∑
m,nR

ij
mnamk a

n
l

∑
o,pR

op
lk a

j
paio

Thus, applying Propositon 0.2(4), we conclude:∑
n,m

Rijnma
n
ka

m
` =

∑
o,p

ajoa
i
pR

po
k`.

We also have a map

χq : 1→ V ⊗N

1 7→
∑
σ∈ΣN

(−q)−`(σ)vσ(1) ⊗ · · · ⊗ vσ(N)

and a q-determinant:

detq =
∑
σ∈ΣN

(−q)−`(σ)a1
σ(1) · · · a

N
σ(N).
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Using χq in place of χ in diagram (0.6), we can presentOq(SLN ) as the non-commutative polynomial
ring generated by the aij subject to the above relations and detq = 1.

Example 0.8. Oq(SL2) is generated by a, b, c, d subject to the relations

ac = qca, ab = qba, cd = qda, bd = qdb, bc = cb, ad = da+ (q − q−1)bc, ad− q−1bc = 1

This is a flat deformation of O(SLN ). �


