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Preface

Why do countries insist on obtaining nuclear weapons? What is a fair alloca-
tion of property taxes in a community? Should armies ever be divided and in
what way in order to attack more than one target? How should a rat run to
avoid capture by a cat? Why do conspiracies almost always fail? What per-
centage of offensive plays in football should be passes and what percentage of
defensive plays should be blitzes? These are the questions that game theory
can answer. Game theory arises in almost every facet of human interaction
(and inhuman interaction as well) because in almost every interaction objec-
tives are either opposed or cooperation is an option. Modern game theory is
a rich area of mathematics for economics, political science, military science,
finance, biological science (because of competing species), and so on.

I have taught game theory to undergraduates off and on for 20 years.
I was unable to find a text which was appropriate for the class. I needed
a book which is meant for mathematics undergraduate students at junior
or senior level and for a one semester course. In addition, I needed a book
which did not spend three fourths of the class on linear programming because
Maple can easily do the kinds of linear programs involved in game theory.
Amazingly, I was not able to find any existing game theory book which met
these requirements. Of course there are plenty of books on game theory but
they were either too abstract or too applied. So, I started to prepare my own
notes and realized that this might be useful for other instructors of game
theory, especially in mathematics or engineering departments.

My experience is that the students who enroll in game theory are primarily
mathematics students interested in applications, with about one third to one
half of the class economics students. The modern economics and operations
research curriculum requires more and more mathematics and game theory is
typically a required course. For economics students with a more mathematical
background, this is an ideal level of course. For mathematics students inter-
ested in a graduate degree in something other than mathematics, this course
shows them another discipline in which they might be interested and be able
to further their studies, or simply to learn some fun mathematics.
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The prerequisites for this course involve very basic probability (definitions
of discrete probability, expectation) and very basic linear algebra (matrix
multiplication, transpose, inverses). These topics could even be covered in
a short appendix. Exercises will be provided at the end of each chapter or
section. Since I have lectured from these notes I have tried to present the
material with logical breaks for each lecture. The length of the book is kept
to a minimum amount to be able to cover the entire book in one semester
(roughly 14 weeks).

These notes are far from exhaustive of the theory of games. Many very
interesting topics are not included because there is no way to cover more
topics in one semester. In addition, many precise definitions in their abstract
form are omitted as are the proofs of many of the results used, such as for
the properties of optimal strategies. This is not meant to be a theorem-proof
type of course. Some proofs of the more basic results are at least sketched and
they can be omitted. The sequence of topics is (1) 2 person zero sum matrix
games; (2) Nonzero sum games and the reduction to nonlinear programming;
(3) Cooperative games covering both the Nucleolus concept and the Shapley
value; and (4) Bargaining, including threat strategies.

One of the unique features of this book is the use of Maple to find the values
and strategies of games, both zero and nonzero sum, and noncooperative and
cooperative. The major computational impediment to solving a game is the
roadblock of solving a linear or nonlinear program. Maple gets rid of those
problems and the theories of linear and nonlinear programming do not need
to be presented to do the computations. The vast majority of colleges have
Maple licenses and I feel that this is a reasonable technological requirement.

My experience with game theory for undergraduates is that students
greatly enjoy both the theory and applications which are so obviously rel-
evant and fun. I think that a book aimed at the audience I am targeting
would be successful.

Chicago, Illinois,
December, 2006 E.N. Barron
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Matrix 2 person games

What is a game? This turns out to be not so easy to define even though
everyone has played games from our earliest days. Relying on an intuitive
idea, a 2 player game is a quantitative description of the rules of the game for
each player. This includes the strategies they will use in playing the game in
every situation, and the outcomes of the use of those strategies. The outcome
of the game is represented by numbers which give the payoff to each player at
the end of each play of the game. A strategy, loosely speaking, is a plan for
what to do at each stage of the game depending on the current state. If you
can imagine the game of chess, a strategy would be a very complicated thing.

Let’s call the two players I and II. Suppose that player I has a choice of
n possible strategies and player II has a choice of m possible strategies. If
player I chooses a strategy, say strategy i and player II chooses a strategy j,
then they play the game and the payoff to each player is computed. In a zero
sum game, whatever one player wins the other loses, so if aij is the amount
player I receives, then II gets −aij . Now we have a collection of numbers
{aij}, i = 1, . . . , n, j = 1, . . . , m, and we can arrange these in a matrix. These
numbers are called the payoffs to player I and the matrix is called the payoff
or game matrix.

Player II
Strategy 1 Strategy 2 · · · Strategy m

Strategy 1 a11 a12 · · · a1m

Strategy 2 a21 a22 a2m

Player I
...

...
...

...
...

Strategy n an1 an2 · · · anm

By agreement we place player I as the row player and player II as the
column player. We also agree that the numbers in the matrix represent the
payoff to player I. In a zero sum game the payoffs to player II would be the
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negative of those in the matrix. Of course if player I has some payoff negative,
then player II would have a positive payoff.

Summarizing, a two person zero sum game in matrix form means that
there is a matrix A = (aij), i = 1, . . . , n, j = 1, . . . , m of real numbers so that
if Player I, the row player chooses to play row i and player II, the column
player, chooses to play column j, then the payoff to Player I is aij and the
payoff to Player II is −aij . Thus, whatever Player I wins, Player II loses.

Now lets be concrete and do this with an example.

Example 1.1. 2 × 2 Nim 4 pennys are set out in 2 piles of 2 pennys each.
Player I chooses a pile and then decides to remove 1 or 2 pennys from the
pile chosen. Then player II chooses a pile with at least one penny and decides
how many pennys to remove. Then player I starts the second round with the
same rules. When both piles have no pennys the game ends and the loser is
the player who removed the last penny. The loser pays the winner 1 dollar.

Strategies for this game for each player must specify what each player will
do depending on how many piles are left and how many pennys in each pile,
at each stage. Let’s draw a diagram of all the possibilities.

1 2 0 2

0 2 1 1 1 0 0 1 0 0

0 1 0 0 1 0 0 0 0 0

0 0 0 0

Player I

Player II

Player I

Player II

I wins

II wins

I wins

II wins II wins

I wins

2 2

Fig. 1.1. 2 X 2 NIM

Next we need to write down the strategies for each player:

Strategies for Player I
(1) Play (1,2) then, if at (0,2) play (0,1).
(2) Play (1,2) then if at (0,2) play (0,0).
(3) Play (0,2).
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You can see that a strategy for I must specify what to do no matter what
happens. Strategies for II are even more involved:

Strategies for player II
(1)If at (1,2) → (0,2); if at (0,2) → (0,1)
(2)If at (1,2)→ (1,1); if at (0,2)→ (0,1)
(3) If at (1,2)→ (1,0); if at (0,2)→ (0,1)
(4) If at (1,2)→ (0,2); if at (0,2)→ (0,0)
(5) If at (1,2)→ (1,1); if at (0,2)→ (0,0)
(6) If at (1,2)→ (1,0); if at (0,2)→ (0,0)

Playing strategies for player I against player II results in the payoff matrix
for the game, with the entries representing the payoffs to player I.

Player I/Player II 1 2 3 4 5 6
1 1 1 -1 1 1 -1
2 -1 1 -1 -1 1 -1
3 -1 -1 -1 1 1 1

Looking at this matrix we see that player II would never play strategy 5
because player I then wins no matter which row he plays. Any rational player
would drop column 5 from consideration. By the same token if you look at
column 3 this game is finished. Why? because no matter what player I does,
if II plays column 3, he wins +1. Player I always loses as long as player II
plays column 3. That is, if Player I goes to (1,2) player II should go to (1,0).
If Player I goes to (0,2), player II should go to (0,1). This means that II can
always win the game as long as I plays first.

We say that the value of this game is -1 and the strategies

(I1, II3), (I2, II3), (I3, II3)

are saddle points, or optimal strategies for the players. We will be more precise
about what it means to be optimal in a little while, but for this example it
means player I can improve if player II deviates from column 3 and player II
should not deviate from column 3.

This game is not very interesting because there is always a winning strategy
for player II and it is pretty clear what it is. Why would player I ever want to
play this game? There are actually many games like this (tic-tac-dough is an
obvious example) which are not very interesting because their outcome (the
winner and the payoff) is determined as long as the players play optimally.
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Chess is not so obvious an example because the number of strategies is so
large that the game cannot, or has not, been analyzed in this way. It is a
predetermined game if we knew what the optimal strategies were, but we
don’t. That is why it is still fun to play.

Example 1.2. Evens or Odds In this game, each player decides to show 1,
2 or 3 fingers. These are the strategies of each player. If the total number of
fingers shown is even, player I wins +1 and player 2 loses −1. If the total
number of fingers is odd, player I loses −1, and player II wins +1. We may
represent the Payoff Matrix as follows:

Player II Odds
1 2 3

1 1 -1 1
Player I Evens 2 -1 1 -1

3 1 -1 1

The row Player here and throughout this book will always want to max-

imize his payoff, while the column player wants to minimize the payoff to
the row player, so that his own payoff is maximized (because it is a zero sum
game).The rows are called the pure strategies for player I and the columns
are called the pure strategies for player II.

The question is : How should each player decide what number of fingers to
show? If the row player always chooses the same row, say 1 finger, then player
II can always win by showing 2 fingers. No one would be stupid enough to
play like that. So what do we do? In contrast to 2×2Nim, there is no obvious
strategy that is winning for either player.

For now, consider what player I should do on a given play of the game. If I
chooses row (=strategy) 1, then player II should choose strategy 2. Of course
II won’t know what I is going to show because they have to show fingers
simultaneously.

In order to determine what the players should do in any zero sum matrix
game we begin with figuring out a systematic way of seeing if there is an
obvious solution.

We look at a game with matrix A = (aij) from player I’s point of view. I
assumes that player II is playing his best so II chooses a column j so as to

Minimize aij over j = 1, . . . , m

for any given row i. Then player I can guarantee that he can choose the row i
that will Maximize this. So Player I can guarantee that in the worst possible
situation he can get
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v− := max
i=1,...,n

min
j=1,...,m

aij

and we call this the lower value of the game.
Next, consider the game from II’s point of view. II assumes that I is playing

his best so that I will choose a row so as to

Maximize aij over i = 1, . . . , n

for any given column j = 1, . . . , m. Player II can therefore choose his column
j so as to lose no more than

v+ := min
j=1,...,m

max
i=1,...,n

aij

and we call this the upper value of the game.
Here is how to find the upper and lower values:
In a 2 person zero sum game with a finite number of strategies for each

player, we write the game matrix is written as

A =











a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

...
...

an1 an2 · · · anm











For each row, find the minimum payoff in each column (written in the last
column). Then the lower value is the largest number in that column, i.e., the
maximum over rows of the minimum over columns. Similarly, in each column
find the maximum of the payoffs (written in the last row). The upper value is
the the largest of those numbers.

a11 a12 · · · a1n −→ minj a1j

a21 a22 · · · a2n −→ minj a2j

...
... · · ·

...
am1 am2 · · · amn −→ minj amj

↓ ↓ · · · ↓
maxi ai1 maxi ai2 · · · maxi ain v− = largest min

v+ = smallest max

Definition 1.0.1 A matrix game with matrix A = (aij) has the lower value

v− := max
i=1,...,n

min
j=1,...,m

aij

and v− is the smallest amount Player I is guaranteed to receive, and the upper
value



6 1 Matrix 2 person games

v+ := min
j=1,...,m

max
i=1,...,n

aij

and v+ is the largest amount Player II can be guaranteed to lose. The game
has a value if v− = v+ and we write it as v = v(A) = v+ = v−.

It should be clear that the most I can be guaranteed to win should be less
than (or equal) to the least II can be guaranteed to lose, i.e., v− ≤ v+. Here
is a quick verification of this fact.

For any column j we know that minj aij ≤ aij and so v− = maxi minj aij ≤
maxj aij . This is true for any row i = 1, . . . , n. The left side is just a number
independent of i and it is smaller than the right side for any i. But this means
that v− ≤ mini maxj aij = v+, and we are done.

Closely related to the concept of value is the concept of a saddle point
which basically tells the player what to do in order to obtain the value of the
game. We call a particular row i∗ and column j∗ a saddle point in pure

strategies of the game if

aij∗ ≤ ai∗j∗ ≤ ai∗j , for all rows i and columns j. (1.0.1)

A game will have a saddle point in pure strategies if and only if

v− = max
i

min
j

aij = min
j

max
i

aij = v+.

Why? Well, if (1.0.1) is true, then

v+ = min
i

max
j

ai,j ≤ max
i

ai,j∗ ≤ ai∗,j∗ ≤ min
j

ai∗,j ≤ max
i

min
j

ai,j = v−.

But v− ≤ v+ always and so we have equality throughout and v = v+ = v− =
ai∗,j∗ . We leave it as an exercise for the reader to show that if the game has
a value then it also has a saddle point.

When a saddle point exists in pure strategies it says that if any player
deviates from playing his part of the saddle then the other player can take
advantage and do better.

We know that v+ ≥ v− is always true. The question is: What do we do if
v+ > v−?

1.0.1 The Von Neumann Minimax Theorem

Saddle points don’t only apply to matrix games. Indeed let’s give the definition
for an arbitrary function f.

Definition 1.0.2 A function f : X × Y → R has at least one saddle point
(x∗, y∗) with x∗ ∈ X and y∗ ∈ Y if and only if

f(x, y∗) ≤ f(x∗, y∗) ≤ f(X∗, y) for all x ∈ X, y ∈ Y.
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Once again we could define the upper and lower values for the game defined
using the function f , called a continuous game, by

v+ = min
x∈X

max
y∈Y

f(x, y), and v− = max
y∈Y

min
x∈X

f(x, y).

You can check as before that v− ≤ v+. The Von Neumann minimax theorem
gives conditions on f, X, and Y so that v+ = v− and the game value v then
exists.

In order to state the theorem we need to introduce some definitions.

Definition 1.0.3 A set C ⊂ Rn is convex if for any two points a, b ∈ C and
all scalars λ ∈ [0, 1], the line segment connecting a and b is also in C, i.e.,
λa + (1 − λ)b ∈ C, 0 ≤ λ ≤ 1. C is closed if it contains all limit points of
sequences in C and C is bounded if it can be shoved inside a ball for a large
enough radius.

A function g : C → R is convex if g(λa + (1 − λ)b) ≤ λg(a) + (1 − λ)g(b)
for any a, b ∈ C, 0 ≤ λ ≤ 1. This says that The line connecting f(a) with f(b)
must always lie above the function.The function is concave if g(λa+(1−λ)b) ≥
λg(a) + (1 − λ)g(b) for any a, b ∈ C, 0 ≤ λ ≤ 1.

Here is the basic von Neumann minimax theorem

Theorem 1.0.4 Let f : X × Y → R be a continuous function. Let X and
Y be convex, closed, and bounded. Suppose that x 7→ f(x, y) is concave, and
y 7→ f(x, y) is convex. Then

min
y∈Y

max
x∈X

f(x, y) = max
x∈X

min
y∈Y

f(x, y).

Proof. This is a sketch of the proof using only elementary properties of convex
functions.

1. Assume first that f is strictly concave-convex, meaning that

f(λx + (1 − λ)z, y) > λf(x, y) + (1 − λ)f(z, y) and

f(x, µy + (1 − µ)w) < µf(x, y) + (1 − µ)f(x, w).

The advantage of doing this is that for each x ∈ X there is one and only one
y = y(x) ∈ Y (y depends on the choice of x) so that

f(x, y(x)) = min
y∈D

f(x, y) := g(x).

This defines a function g : X → R which is continuous (since f is continuous
on the closed bounded sets X × Y and so uniformly continuous) and g(x) is
concave since

g(λx + (1 − λ)z) ≥ min
y

(λf(x, y) + (1 − λ)f(x, z)) ≥ λg(x) + (1 − λ)g(z).

So, there is a point x∗ ∈ X at which g achieves its maximum, i.e.,
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g(x∗) = max
x∈X

min
y∈Y

f(x, y).

2. Let x ∈ X be arbitrary. Then

f(λx + (1 − λ)x∗, y) > λf(x, y) + (1 − λ)f(x∗, y) ≥ λf(x, y) + (1 − λ)g(x∗)

Now set

yλ := y(λx + (1 − λ)x∗) ∈ Y, so

f(λx + (1 − λ)x∗, yλ) = min
y∈Y

f(λx + (1 − λ)x∗, y) = g(λx + (1 − λ)x∗).

Since g is concave, we have

g(λx + (1 − λ)x∗) ≥ λg(x) + (1 − λ)g(x∗) ≥ λf(x, yλ).

It is also true that g(x∗) ≥ g(λx + (1 − λ)x∗) since g(x∗) ≥ g(x), ∀ x ∈ X.
Therefore,

f(x, yλ) ≤ g(x∗) = f(x∗, y(x∗)). (1.0.2)

3. Sending λ → 0 we see that yλ = λx + (1 − λ)x∗ → x∗ as well as
yλ → y(x∗). Using (1.0.2) we see that

f(x, y(x∗)) ≤ f(x∗, y(x∗)) := v, for any x ∈ X.

Consequently, with y∗ = y(x∗)

f(x, y∗) ≤ f(x∗, y∗) := v.

But, by construction of y(x) we immediately have f(x∗, y∗) ≤ f(x∗, y), ∀ y ∈
Y, so we conclude that

f(x, y∗) ≤ f(x∗, y∗) = v ≤ f(x∗, y), ∀ x ∈ X, y ∈ Y.

This says that (x∗, y∗) is a saddle point and the minimax theorem holds, since

min
y

max
x

f(x, y) ≤ max
x

f(x, y∗) ≤ v ≤ min
y

f(x∗, y) ≤ max
x

min
y

f(x, y).

and so we have equality throughout.
4. The last step would be to get rid of the assumption of strict concavity

and convexity, which we omit.
⊓⊔

So, this very important theorem tells us what we need in order to guarantee
that our game has a value. It is critical that we are dealing with a concave
convex function, and that the strategy sets be convex. Given a matrix game,
how do we do that? That is the subject of the next section.
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1.0.2 Mixed strategies

In most 2 person zero sum game a saddle point in pure strategies will not exist
because that would say that the players should always do the same thing.
Such games, which include 2 × 2Nim, Tic-Tac-Dough, and many others, are
not interesting when played over and over. The question we answer in this
section is to decide how to play the game when there is not a saddle point in
pure strategies, such as in the simple game of odds and evens. Indeed most
games of interest in real life do not have saddle points in pure strategies.

It seems that if a player should not always play the same strategy, then
there should be some randomness involved, because otherwise the opponent
will be able to figure out what the player is doing. When a player plays ran-
domly it means that he chooses a row or column according to some probability
vector. These vectors are called mixed strategies.

Definition 1.0.5 A mixed strategy is a vector X = (x1, . . . , xm) for player
I and Y = (y1, . . . , yn) for player II where, xi ≥ 0,

∑n
i xi = 1 and yj ≥

0,
∑m

j yj = 1. The components xi represent the probability that row i will be
used by I and yj the probability column j will be used by II. Denote the set of
mixed strategies with k components by

Sk := {(z1, z2, . . . , zk)|zi ≥ 0, i = 1, 2, . . . , k,

k
∑

i=1

zi = 1}.

So, if player I uses the mixed strategy X = (x1, . . . , xn) ∈ Sn then he will
use row i on each play of the game with probability xi. Every pure strategy
is a mixed strategy by choosing all the probability to be concentrated at the
pure strategy, i.e., if I wants to always play row 3, for example, then the
mixed strategy he would choose is X = (0, 0, 1, 0, . . . , 0). Therefore allowing
the players to choose mixed strategies permits more choices for the players
and so this is an extension of the game.

Now if the players use mixed strategies the payoff can only be calculated
in the expected sense. That means the game payoff will represent what each
player can be expected to receive. More precisely we calculate as follows.

Given a choice of mixed strategy X ∈ Sn for I and Y ∈ Sm for II, the
expected payoff to player I of the game is

E(X, Y ) =
∑

i,j

aijP (I uses i and II uses j)

=
∑

i,j

aijP (I uses i)P (II uses j) =

n
∑

i=1

m
∑

j=1

xiaijyj = X A Y T . (1.0.3)

In a zero sum 2 person game the expected payoff to player II would be
−E(X, Y ). Recall that player I wants to maximize his expected payoff and
player II wants to minimize the expected payoff to I.
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Now we can define in a similar way what we mean by a saddle point in
mixed strategies.

Definition 1.0.6 A saddle point in mixed strategies is a pair (X∗, Y ∗) of
probability vectors which satisfies

E(X, Y ∗) ≤ E(X∗, Y ∗) ≤ E(X∗, Y ), ∀ (X ∈ Sn, Y ∈ Sm).

If player I decides he is going to use a strategy other than X∗ but player II
still uses Y ∗, then I receives a smaller expected payoff than what he could get
if he stuck with X∗. A similar statement holds for player II. So (X∗, Y ∗) is
an equilibrium in this sense.

Does a game with matrix A have a saddle point in mixed strategies? Von
Neumann’s minimax theorem tells us the answer is yes. All we need to do is
define the function f(X, Y ) := E(X, Y ) = XAY T . For any n × m matrix A
this function is concave in X and convex in Y. Actually, it is even linear in
each variable when the other variable is fixed. Recall that any linear function
is both concave and convex so our function f is concave convex and certainly
continuous. The second requirement of Von Neumann’s theorem is that the
sets Sn and Sm be convex sets. This is very easy to check and we leave
that as an exercise for the reader. These sets are also closed and bounded.
Consequently, we may apply the general Von Neumann Theorem to conclude
the following.

Theorem 1.0.7 For any n × m matrix A,

min
Y ∈Sm

max
X∈Sn

XAY T = max
X∈Sn

min
Y ∈Sm

XAY T .

The common value is denoted v(A), and that is the value of the game. In
addition there is at least one point X∗ ∈ Sn, Y ∗ ∈ Sm so that

E[X, Y ∗] ≤ E[X∗, Y ∗] = v(A) ≤ E[X∗, Y ], for all X ∈ Sn, Y ∈ Sm.

So, (X∗, Y ∗) is a saddle point, i.e., optimal mixed strategies for the game.

Remark 1.0.8 While this theorem says that there is always a saddle point
in mixed strategies it does not give a way to find them. The next theorem is a
step in that direction.

Notation 1.0.9 For an n × m matrix A = (aij) we denote the jth column
vector of A by Aj and the ith row vector of A by iA. So

Aj =











a1j

a2j

...
anj











and iA = (ai1, ai2, · · · , aim)
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If player I decides to use the pure strategy X = (0, . . . , 1, . . . , 0) with row i
used 100% of the time and II uses the mixed strategy Y we denote the expected
payoff by E(i, Y ) =i A · Y T . Similarly, if player II decides to use the pure
strategy Y = (0, . . . , 1, . . . , 0) with column j used 100% of the time we denote
the expected payoff by E(X, j) = XAj. So we may also write E[i, j] = aij .

Our next theorem gives us a way of finding the value and the optimal
mixed strategies.

Theorem 1.0.10 Let A = (aij) be an n × m game with value v(A).
X∗ ∈ Sn is optimal for player I iff

v(A) ≤ E(X∗, j) = X∗Aj =

n
∑

i=1

x∗
i aij , j = 1, . . . , m.

So X∗ played against any column for player II will result in a payoff at least
as large as v(A).

Y ∗ ∈ Sn is optimal for II iff

E(i, Y ∗) =i A Y ∗T =

m
∑

j=1

aijy
∗
j ≤ v(A), i = 1, 2, . . . , n.

So Y ∗ played against any row for player I results in a payoff (to player I) no
bigger than v(A).

Proof. Suppose v(A) ≤ X∗Aj , j = 1, 2, . . . , m. Let X0, Y 0 be a saddle point
of the game (which we know exists by Von Neumann’s theorem) so that
XAY 0T ≤ X0AY 0T ≤ X0AY T for any X ∈ Sn, Y ∈ Sm.

Claim: (X∗, Y 0) is also a saddle point.
Let Y = (yj) be any mixed strategy for II. Then

∑

j

v(A) yj = v(A) ≤
m
∑

j=1

E(X∗, j)yj =

m
∑

j=1

X∗Ajyj = X∗AY T .

In particular we could certainly choose Y = Y 0 to get also v(A) ≤ X∗AY 0T .
Next, we obtain in a similar way that X∗AY 0T ≤ X0AY 0T = v(A).

Combining these two gives X∗AY 0T = X0AY 0T = v(A). We conclude that

XAY 0T ≤ X∗AY 0T ≤ X∗AY T , for all X ∈ Sn, Y ∈ Sm,

so that (X∗, Y 0) is a saddle point for the game and so X∗ is optimal for player
I. The rest of the proof follows in the same way. ⊓⊔

Now let’s use the theorem to see how we can compute the value and
strategies for some games.

Example 1.3. Evens and Odds revisited In the game of odds or evens we
came up with the game matrix
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Player II
1 2 3

1 1 -1 1
Player I 2 -1 1 -1

3 1 -1 1

Suppose that v is the value of this game and (X∗ = (x1, x2, x3), Y
∗ =

(y1, y2, y3)) is a saddle point. According to the theorem these quantities should
satisfy

E(i, Y ∗) =i A Y ∗T =
3
∑

j=1

aijyj

≤ v ≤ E(X∗, j) = X∗Aj =

3
∑

i=1

xiaij , i = 1, 2, 3, j = 1, 2, 3.

Using the values from the matrix we have the system of inequalities

y1 − y2 + y3 ≤ v, −y1 + y2 − y3 ≤ v, and y1 − y2 + y3 ≤ v

x1 − x2 + x3 ≥ v, −x1 + x2 − x3 ≥ v, and x1 − x2 + x3 ≥ v.

Let’s go through finding only the strategy X∗ since finding Y ∗ is similar. We
are looking for numbers x1, x2, x3 and v satisfying x1 − x2 + x3 ≥ v, −x1 +
x2 − x3 ≥ v, as well as x1 + x2 + x3 = 1 and xi ≥ 0, i = 1, 2, 3. But then
x1 = 1 − x2 − x3 and so

1 − 2x2 ≥ v, and − 1 + 2x2 ≥ v =⇒ −v ≥ 1 − 2x2 ≥ v.

If v ≥ 0 this says that in fact v = 0 and then x2 = 1/2. Let’s assume then
that v = 0 and x2 = 1/2. This would force x1 + x3 = 1/2 as well. Instead of
substituting for x1 let’s do it for x2. You would see that again we would get
x1 + x3 = 1/2. Something is going on with x1 and x3 and we don’t seem to
have enough information to find them. But we can see from the fact that in
the matrix it doesn’t matter if player I shows 1 or 3 fingers! The payoffs in all
cases are the same. This means that row 3 (or row 1) is a redundant strategy
and we might as well drop it. We can say the same for column 1 or column 3.
If we drop row 3 we go through the same set of calculations but we quickly
find that x2 = 1/2 = x1. Of course we assumed that v ≥ 0 to get this but
now we have our candidates for the saddle points and value, namely v = 0,
X∗ = (1/2, 1/2, 0) and also, in a similar way Y ∗ = (1/2, 1/2, 0). Check that
with these candidates the inequalities of the theorem are satisfied and so they
are the actual value and saddle.

But, it is important to remember that with all three rows and columns, the
theorem does not give a single characterization of the saddle point. Indeed,
there are an infinite number of saddle points, X∗ = (x1, 1/2, 1/2 − x1), 0 ≤
x1 ≤ 1/2 and Y ∗ = (y1, 1/2, y1 − 1/2), 0 ≤ y1 ≤ 1/2. Nevertheless, there is
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only one value for this, or any matrix game, and it is v = 0 in the game of
odds and evens.

Later we will see that this theorem gives a method for solving any matrix
game if we pair it up with linear programming which is a way to optimize a
linear function over a set with linear constraints.

Properties of optimal strategies Before we go any further we summa-
rize various properties of 2 person zero sum games and their optimal strategies.
We skip the proofs but they are not that hard to obtain.

1. Let value(A) be the value of a game with matrix A. If X is any strategy
for player I such that w ≤ E(X, j), j = 1, . . . , m, for a given number w,
then w ≤ value(A). Similarly, if Y is a strategy for player II such that
w ≥ E(i, Y ), i = 1, . . . , n, then w ≥ value(A). In other words, if w is
a number less than the expected payoff when X is played against any
column, then it must be that w is at least as large as value(A). A similar
statement holds for Y. That is, w ≤ E(X, j), ∀j, =⇒ w ≥ v(A). Also
w ≥ E(i, Y ), ∀ i, =⇒ w ≤ v(A).

2. If w is any number such that E(i, Y ) ≤ w ≤ E(X, j), i = 1, . . . , n, j =
1, . . . , m, where X is a strategy for I and Y is a strategy for II, then
w = value(A) and (X, Y ) must be a saddle point.

3. If X is a strategy for I and value(A) ≤ E(X, j), j = 1, . . . , n, then X is
optimal for I. If Y is a strategy for II and value(A) ≥ E(i, Y ), i = 1, . . . , m,
then Y is optimal for II.

4. If Y is optimal for II and yj > 0 then E(X, j) = value(A) for any optimal
mixed strategy X for I. Similarly, if X is optimal for I and xi > 0 then
E(i, Y ) = value(A) for any optimal Y for II. Thus, if any optimal mixed
strategy for a player has a strictly positive probability of using a row or
a column, then that row or column played against any optimal opponent
strategy will yield the value.

5. If X is any optimal strategy for I and E(X, j0) > value(A) for some
column j0, then for any optimal strategy Y for II, we must have yj0 = 0.
Similarly, if Y is any optimal strategy for II and E(i0, Y ) < value(A),
then any optimal strategy X for I must have xi0 = 0.

6. If for any optimal strategy Y for II, yj0 = 0, then there is an optimal
strategy X for I so that E(X, j0) > value(A). If for any optimal strategy X
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for I, xi0 = 0, then there is an optimal strategy Y for II so that E(i0, Y ) <
value(A).

7. If a row (or column) is strictly dominated by a convex combination of
other rows (or columns), then this row (column) can be dropped from the
matrix.

Remark 1.0.11 Property (7) says that sometimes we can reduce the size of
the matrix A by eliminating rows or columns (i.e., strategies) that will never be
used because there is always a better row or column to use. This is elimination
by dominance.

For example, if every number in row i is bigger or equal to every cor-
responding number in row k, i.e., aij ≥ akj , j = 1, . . . , m, then the row
player would never play row k (since he wants the biggest possible payoff)
and so we can drop it from the matrix. Similarly,if every number in col-
umn j is less than or equal to every corresponding number in column k, i.e.,
aij ≤ aik, i = 1, . . . , n, then the column player would never play column k
(since he wants player I to get the smallest possible payoff) and so we can
drop it from the matrix. If we can reduce it to a 2×m or n× 2 game then we
can solve it by graphical procedure which we will consider shortly. If we can
reduce it to a 2× 2 matrix we can use formulas we derive in the next section.

Property (7) means that if, for example row k is dominated by a convex
combination or two other rows, say p and q, then we can drop row k. This
means that if there is a constant λ ∈ [0, 1] so that

akj ≤ λapj + (1 − λ)aqj , j = 1, . . . , m

then row k is dominated and can be dropped. Of course if the constant λ = 1
then row p dominates row k and we can drop row k. If λ = 0 then row q
dominates row k.

Example 1.4. Consider the 3 × 3 game

A =





1 1 1
1 2 0
1 0 2





There is no obvious dominance of one row by another or one column by
another. However, if we suspect dominance by a convex combination we can
check as follows.

If row 1 is dominated by a convex combination of rows 2 and 3 then we
must have, for some 0 ≤ λ ≤ 1 the inequalities

1 ≤ λ(1) + (1 − λ)(1), 1 ≤ 2(λ) + 0(1 − λ), 1 ≤ 0(λ) + 2(1 − λ).
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Simplifying, 1 ≤ 1, 1 ≤ 2λ, 1 ≤ 2 − 2λ. But this says λ = 1/2. So, there is a
λ = 1/2 which works, and row 1 may be dropped from the matrix (i.e., any
mixed strategy will play row 1 with probability 0). So now the new matrix is

A′ =

(

1 2 0
1 0 2

)

By the same technique, it is easy to see that column 1 is dominated by a
combination of columns 2 and 3 and so column 1 may be dropped. We are
left with the matrix

A′′ =

(

2 0
0 2

)

from which it should be clear that each row and column should be played
1/2 the time. So the optimal strategies for the original game are X∗ =
(0, 1/2, 1/2) = Y ∗ and the value=E(X∗, Y ∗) is 1.

This example shows that games do not necessarily have unique optimal
strategies. For instance X∗ = (1, 0, 0) = Y ∗ is another saddle point, and in
fact X∗ = (λ, 1

2 (1 − λ), 1
2 (1 − λ)) and Y ∗ = (µ, , 1

2 (1 − µ), 1
2 (1 − µ)) for any

choice of λ, µ ∈ [0, 1] is another saddle point. However, the value of the game
is always unique and it is 1 in this example.

1.0.3 Best Response Strategies

If you are playing a game and you determine, in one way or another, that
your opponent is using a particular strategy, then what should you do? To
be specific, suppose you are player I and you know that player II is using the
mixed strategy Y, optimal or not for player II. In this case you should play
the mixed strategy X which maximizes E(X, Y ). This strategy that you use
would be a best response to the use of Y by player II. The best response
strategy to Y may not be the same as what you would use if you knew that
player II was playing optimally. That is, it may not be a part of a saddle
point. Here is the precise definition.

Definition 1.0.12 A mixed strategy X∗ for player I is a best response strat-
egy to the strategy Y for player II if it satisfies

max
X∈Sn

E(X, Y ) = max
X∈Sn

n
∑

i=1

x∗
i aijyj = E(X∗, Y ).

A mixed strategy Y ∗ for player II is a best response strategy to the strategy X
for player I if it satisfies

min
Y ∈Sm

E(X, Y ) = min
Y ∈Sm

m
∑

j=1

xiaijy
∗
j = E(X, Y ∗).
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Example 1.5. In the preceding example we determined that for the matrix
Consider the 3 × 3 game

A =





1 1 1
1 2 0
1 0 2





the saddle point is X∗ = (0, 1/2, 1/2) = Y ∗ and v(A) = 1. Now suppose
that player II, for some reason, thinks they can do better by playing Y =
(1/4, 1/4, 1/2). What is an optimal response strategy for player I?

Let X = (x1, x2, 1 − x1 − x2). Calculate

E(X, Y ) = XAY T = −x1/4 − x2/2 + 5/4.

We want to maximize this with the constraints 0 ≤ x1, x2 ≤ 1. We don’t have
to do anything more. We see right away that E(X, Y ) is maximized by taking
x1 = x2 = 0 and then x3 = 1. Hence, the best response strategy for player I if
player II uses Y = (1/4, 1/4, 1/2)is X∗ = (0, 0, 1). Then, the expected payoff
to I is E(X∗, Y ) = 5/4 which is larger than the value of the game v(A) = 1.
So that is how player I should play if player II decides to deviate from the
optimal Y.

1.1 Solution of some special games

Now we will consider some special types of games for which we actually have
a formula giving the value and the saddle points. Let’s start with the easiest
possible class of games which can always be solved explicitly.

1.1.1 2 × 2 games

Here

A =

(

a11 a12

a21 a22

)

Player I :X =

(

x
1 − x

)

Player II :Y =

(

y
1 − y

)

So for any mixed strategies we have E(X, Y ) = XAY T , which, written out,
is

E(X, Y ) = xy(a11 − a12 − a21 + a22) + x(a12 − a22) + y(a21 − a22) + a22.

Theorem 1.1.1 In the 2 × 2 game with matrix A, assume that there are no
pure optimal strategies. Let X∗ = (x∗, 1 − x∗) be optimal for I and Y ∗ =
(y∗, 1 − y∗) optimal for II. If we set

x∗ =
a22 − a21

a11 − a12 − a21 + a22
, y∗ =

a22 − a12

a11 − a12 − a21 + a22
.
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then X∗ = (x∗, 1 − x∗), Y ∗ = (y∗, 1 − y∗) are optimal mixed strategies. The
value of the game is

v(A) = E(X∗, Y ∗) =
a11a22 − a12a21

a11 − a12 − a21 + a22
.

Remark 1.1.2 A more compact way to write this and easier to remember is

x∗ =
(1 1)A∗

(1 1)A∗

(

1
1

) and y∗ =

A∗

(

1
1

)

(1 1)A∗

(

1
1

) (1.1.1)

value(A) =
det(A)

(1 1)A∗

(

1
1

) (1.1.2)

whereA∗ =

(

a22 −a12

−a21 a11

)

and det(A) = a11a22 − a12a21. (1.1.3)

The matrix A∗ is called the (transpose) of the cofactor matrix. Recall that
the inverse of a 2×2 matrix is found by swapping the main diagonal numbers,
and putting a minus sign in front of the other diagonal numbers, and finally
by dividing by the determinant of the matrix. A∗ is exactly the first two steps
but we don’t divide by the determinant. The matrix we get is is defined even
if the matrix A doesn’t have an inverse. Remember however, we need to make
sure the matrix doesn’t have optimal pure strategies first. If there are optimal
pure strategies then we can’t use these formulas. (Exercise: give an example
to show that when optimal pure strategies exist, the formulas won’t work).

Notice too, that if det(A) = 0 the value of the game is zero.

Here is why the formulas hold. Write f(x, y) = E(X, Y ) where X = (x, 1−
x), Y = (y, 1 − y), 0 ≤ x, y ≤ 1. By assumption there are no optimal pure
strategies and so the extreme points of f will be found inside the intervals
0 < x, y < 1. The function of two variables f(x, y) will have a maximum and a
minimum but because we assume there are no pure strategy points, when we
use calculus to find the critical points the partial derivatives set to zero and
solved will yield the only possibility for a concave convex function, namely a
saddle. The function f has to look like the following:

This is the graph of a concave convex function which has a saddle point
at (1/2, 1/2) and you can see now why it is called a saddle.

Returning to our function f(x, y), take the partial derivatives and set to
zero:

∂f

∂x
= yα + β = 0, and

∂f

∂y
= xα + γ = 0,
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Fig. 1.2. A Saddle Function

where

α = (a11 − a12 − a21 + a22) β = (a12 − a22) γ = (a21 − a22).

We solve where the partials are zero to get

x∗ = −
γ

α
=

a22 − a21

a11 − a12 − a21 + a22
, and y∗ = −

β

α
=

a22 − a12

a11 − a12 − a21 + a22
,

which is the same as what the theorem says. ⊓⊔
So the procedure is: you look for pure strategy solutions first (calculate

v− and v+ and see if they’re equal), but if there aren’t any you may use the
formulas to find the mixed strategy solutions.

1.1.2 Invertible matrix games

In this section we will solve the class of games in which the matrix A is
square, say n × n and invertible, so det(A) 6= 0 and A−1 exists and satisfies
A−1A = AA−1 = In×n. For the present let us suppose that

Player I has an optimal strategy which is completely mixed, i.e. X =
(x1, . . . , xn), and xi > 0, i = 1, 2, . . . , n. So player I plays every row
with positive probability.

By the properties of strategies 1.0.2(4) we know that this implies that
every optimal strategy for player II, Y must satisfy

E(i, Y ) =i AY T = value(A), for every row i = 1, 2, . . . , n.
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So Y played against any row will give the value of the game. If we write
Jn = (1 1 · · · 1) for the row vector consisting of all 1’s we can write

AY T = v(A)JT
n . (1.1.4)

Now, if v(A) = 0 then AY T = 0JT
n = 0 and this is a system of n equations

in the n unknowns Y = (y1, . . . , yn). It is a homogeneous system. Since A
is invertible this would have the one and only solution Y = 0. But that is
impossible if Y is a strategy (the components must add to 1.) So, the value
of the game cannot be zero, and we get, by multiplying both sides of (1.1.4)
by A−1,

A−1AY T = Y T = v(A)A−1JT
n .

This gives Y if we knew v(A). How do we get that. The extra piece of informa-
tion we have is that the components of Y add to 1, i.e.,

∑n
j=1 yj = JnY T = 1.

So,
JnY T = 1 = v(A)JnA−1JT

n

and therefore

v(A) =
1

JnA−1JT
n

and Y T =
A−1JT

n

JnA−1JT
n

. (1.1.5)

We have found the only candidate for the optimal strategy for player II as-
suming that every component of X is greater than 0. But, if it turns out that
this formula for Y has at least one yj < 0, something would have to be wrong
and what’s wrong is that it would not be true that X was completely mixed.
But, if yj ≥ 0 for every component, we could try to find an optimal X for
player I by the exact same method (exercise). This would give us

X =
JnA−1

JnA−1JT
n

.

This method will work if the formulas we get for X and Y end up satisfying the
condition that they are strategies. If either X or Y has a negative component,
then it fails. But notice that the strategies do not have to be completely mixed
as we assumed from the beginning.

Here is a summary of what we know:

Theorem 1.1.3 Assume
1. An×n has an inverse A−1.
2. JnA−1JT

n 6= 0.
Then, setting

v :=
1

JnA−1JT
n

, Y T =
A−1JT

n

JnA−1JT
n

, X =
JnA−1

JnA−1JT
n

,

if xi ≥ 0, i = 1, . . . , n and yj ≥ 0, j = 1, . . . , n, we have that v = v(A) is
the value of the game with matrix A and (X, Y ) is a saddle point in mixed
strategies.
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Now the point is that when we have an invertible game matrix we can
always use the formulas in the theorem to calculate the number v and the
vectors X and Y. If the result gives vectors with nonnegative components
then by the properties 1.0.2 of games, v must be the value, and (X, Y ) is a
saddle point. Notice that from the formulas directly JnY T = 1 and XJT

n = 1
so the components will automatically sum to 1; it is only the sign of the
components which must be checked.

In order to guarantee that the value is not zero we may add a constant
to every element of A which is large enough to make all the numbers of the
matrix positive. In this case the value of the new game could not be zero. Since
v(A+b) = v(A)+b, where b is the constant added to every element (Exercise),
we can find the original v(A) by subtracting b. Adding the constant to all the
elements of A will not change the probabilities of using any particular row or
column, i.e., the optimal mixed strategies are not affected by doing that.

Even if our original matrix A does not have an inverse, if we add a constant
to all the elements of A we get a new matrix A + b and the new matrix may
have an inverse (of course it may not as well). Here is an example.

Example 1.6. Consider the matrix

A =





0 1 −2
1 −2 3
−2 3 −4





This matrix has negative entries so it’s possible that the value of the game
is zero. The matrix does not have an inverse because the determinant of A is
0. So, let’s try to add a constant to all the entries to see if we can make the
new matrix invertible. Since the largest negative entry is −4 let’s add 5 to
everything to get

A + 5 =





5 6 3
6 3 8
3 8 1





This matrix has an inverse given by

B =
1

80





61 −18 −39
−18 4 22
−39 22 21





Next we calculate using the formulas v = 1/(J3BJT
3 ) = 5, and

X = v(J3B) = (1/4 1/2 1/4) and Y = (1/4 1/2 1/4).

Since both X and Y are strategies (they have nonnegative components) the
theorem tells us that they are optimal and the value of our original game is
v(A) = 0.
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Here are the Maple commands to work this out. You can try many different
constant to add to the matrix to see if you get an inverse if the original matrix
does not have an inverse.

>restart:with(LinearAlgebra):

>A:=Matrix([[0 ,1 ,-2 ],[1 ,2 ,-3],[-2 ,3 ,-4 ]]);

>MatrixDeterminant(A);

>A:=MatrixAdd( ConstantMatrix(5,3,3), A );

>B:=A^(-1);

>J:=Vector[row]([1 ,1 ,1 ]);

>J.B.Transpose(J);

>v:=1/J.B.Transpose(J);

>X:=v*(J.B);

>Y:=v*(B.Transpose(J));

The first line loads the Linear Algebra package. The next line enters the
matrix. The MatrixDeterminant command finds the determinant of the matrix
so you can see if it has an inverse. The MatrixAdd command adds the constant
3 × 3 matrix which consists of all 4’s to A. The ConstantMatrix(5,3,3) says
the matrix is 3 × 3 and has all 5’s. The inverse of A is put into the matrix
B and the row vector consisting of 1’s is put into J. Finally we calculate
v = value(A) and the optimal mixed strategies X, Y.

1.1.3 Graphical solution of 2 × m games

When we have an invertible matrix we can use the method of the preceding
section to solve the game. Of course a game with a 2×m matrix cannot have
an inverse but now we can use a very instructive graphical method to solve
the game.

Consider the game given by

A =

(

a11 a12 · · · a1m

a21 a22 · · · a2m

)

We denote, as before, by Aj the jth column of the matrix and iA the ith row.
Suppose that Player I chooses a mixed strategy X = (x, 1− x) and Player

II chooses column j. The payoff to player I is E(X, j) = XAj or, written out,

E(X, j) = x a1j + (1 − x)a2j .

Now, because there are only two rows, a mixed strategy is determined by the
choice of the single variable x ∈ [0, 1]. This is perfect for drawing a plot. On a
graph (with x on the horizontal axis), y = E(X, j) is a straight line through
the two points (0, a2j) and (1, a1j). Now do this for each column j and look
at

f(x) = min
1≤j≤n

X Aj = min
j

x a1j + (1 − x)a2j .
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This is the lower envelope of all the straight lines associated to each strat-
egy j for player II. Then let 0 ≤ x∗ ≤ 1 be the point where the maximum of
f is achieved:

f(x∗) = max
0≤x≤1

f(x) = max
x

min
j

x a1j + (1 − x)a2j .

This is the maximum minimum of f. Then X∗ = (x∗, 1 − x∗) is the optimal
strategy for player I. This is shown in the figure for a 2 × 3 game.

x

10

E(X,1)

E(X,2) E(X,3)

Payoff to player I

Graphical Solution for 2 x 3 Game

optimal x

value of the game

Each line represents the payoff that player I would receive if player I plays
the mixed strategy X = (x, 1 − x) and player II always plays a fixed column.
In the figure you can see that if player I decides to play the mixed strategy
X1 = (x1, 1 − x1) where x1 is to the left of the optimal value, then player II
would choose to play column 2. If player I decides to play the mixed strategy
X2 = (x2, 1− x2) where x2 is to the right of the optimal value, then player II
would choose to play column 3 (up to the point of intersection where E(X, 1) =
E(X, 3)), and then switch to column 1. This shows how player I should choose
x, 0 ≤ x ≤ 1, namely, player I would choose the x that guarantees player I
will receive the maximum of all the lower points of the lines. By choosing
this optimal value, say x∗, it will be the case that player II would play some
combination of columns 2 and 3. It would be a mixture (a convex combination)
of the columns because if player II always chose to play, say column 2, then
player I could do better by changing his mixed strategy to a point to the right
of the optimal value. Remember that ’optimal’ means that it is optimal under
the assumption that the other player is doing his best.

Now we can find the optimal strategy for II because the graph shows that
player II would only use columns 2 and 3, so we can eliminate column 1 and
reduce to a 2 × 2 matrix. Let’s work through a specific example.

Example The matrix payoff to player I is
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A =

(

1 −1 3
3 5 −3

)

Consider the graph for player I first.

-3

5

3

1

-1

3

x
optimal x

E(X,2)

E(X,1)

E(X,3)

Value=1

Fig. 1.3. Graph for player I

Looking at Figure 3, we see that the optimal strategy for I is the x value
where the two lower lines intersect and yields X∗ = (2/3, 1/3). Also v(A) =
E(X∗, 3) = E(X∗, 2) = 1. To find the optimal strategy for II we see that II
will never use the first column. So consider the subgame with the first column
removed

A1 =

(

−1 3
5 −3

)

Now we can solve this graphically assuming that II uses Y = (y, 1− y). Again
we have the payoff to player I if II uses Y but now we look for the y ∈ [0, 1]
for II. Player II wants to choose y so that no matter what I does he (player
II) is guaranteed the smallest maximum. This is now the lowest point of the
highest part of the lines.
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y

E(1,Y)

E(2,Y)

Payoff to Player II

optimal y

We see that the lines intersect with y∗ = 1/2. Hence the optimal strategy
for II is Y ∗ = (0, 1/2, 1/2).

The graphical solution of an n× 2 game is similar to the preceding except
that we begin by finding the optimal strategy for player II first. Here is an
n × 2 game matrix:

A =















a11 a12

a21 a22

a31 a32

...
...

an1 an2















Assume that II uses the mixed strategy Y = (y, 1− y), 0 ≤ y ≤ 1. Then II
wants to choose 0 ≤ y ≤ 1 to minimize the quantity

max
1≤i≤n

E(i, Y ) = max
1≤i≤n

iAY T = max
1≤i≤n

y(ai1) + (1 − y)(ai2).

For each row i = 1, 2, . . . , n the graph of the payoffs (to player I) E(i, Y ) will be
a straight line. So we will end up with n lines. Player I will want to go as high
as possible and there is not much player II can do about stopping him from
doing that. So, player II, playing conservatively, will play the mixed strategy
Y which will give the lowest maximum. The optimal y∗ will be the point giving
the minimum of the upper envelope. Notice that this is a guaranteed optimal
strategy because if player II deviates from the lowest maximum, player I can
do better. Let’s work out an example.

Example 1.7. Let’s consider
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A =









−1 2
3 −4
−5 6
7 −8









This is a 2 × 4 game without a saddle point in pure strategies since v− =
−1, v+ = 6. There is also no obvious dominance, so we try to solve the game
graphically. Suppose player II uses the strategy Y = (y, 1− y), then we graph
the payoffs E(i, Y ), i = 1, 2, 3, 4.

y

E(1,Y)

E(3,Y)

E(2,Y)

E(4,Y)

optimal point

You can see the difficulty with solving games graphically, i.e., you have to
be very accurate with your graphs. Carefully reading the information, it looks
like the optimal strategy for Y will be determined at the intersection point of
E(3, Y ) = −5y + 6(1 − y) and E(1, Y ) = −y + 2(1 − y). This occurs at the
point y∗ = 5/9 and the corresponding value of the game will be v(A) = 1/3.
Since this uses only rows 1 and 4, we may now drop rows 2 and 3 to find the
optimal strategy for player I. We obtain that row 1 should be used 5/6 of the
time and row 4 1/6 of the time, so X∗ = (5/6, 0, 0, 1/6), Y ∗ = (5/9, 4/9).

Example 1.8. This is a modified version of the endgame in poker. Here are the
rules. Player I is dealt a card which may be an Ace or a King. Player I sees
the result but II does not. I may then choose to Pass or Bet. If I passes he
has to pay II $ 1. If I bets, player II may choose to Fold or Call. If II folds,
he pays I $ 1.

Here is a graphical representation of the game.
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Ace King

P PB B

I chooses

$-1
$-1

F FC C

$1 $1$2 $-2

The End Game in Poker

Deal One Card to I

II chooses

Now I has four strategies FF =fold on Ace and fold on King, FB=fold
on Ace and Bet on King, BF =bet on Ace and Fold on King, and BB =bet
on Ace and Bet on King. Player II has only two strategies, namely F =fold
or C =call.

Assuming that the probability of being dealt a King or an Ace is 1/2 we
may calculate the expected reward to I and get the matrix as follows:

I/II C F
FF -1 -1
FB -3/2 0
BF 1/2 0
BB 0 1

For example if I plays BF and II plays C we calculate the expected payoff
to I as (1/2)2 + (1/2)(−1) = 1/2. This is a 4 × 2 game which we can solve
graphically.

1. The lower and upper values are v− = 0, v+ = 1/2 so there is no saddle
point in pure strategies. In addition row 1, namely FF, is a strictly dominated
strategy, so we may drop it. Row 2 is also dominated and it can be dropped.
So we are left with considering the 2 × 2 matrix

A′ =

(

1/2 0
0 1

)

We may use formulas to solve this but we are going to do it graphically.
2. Suppose II plays Y = (y, 1 − y). Then

E(BF, Y ) = A′Y T =
1

2
y and E(BB, Y ) = (1 − y)

There are only two lines to consider and these two lines intersect at 1
2y = 1−y

so that y∗ = 2/3. The optimal strategy for II is Y ∗ = (2/3, 1/3) so II should
Call 2/3 of the time and Bet 1/3 of the time. The value of the game is then
at the point of intersection v = 1/3.
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3. For player I, suppose he plays X = (x, 1 − x). Then

E(X, C) = XA′ =
1

2
x, and E(X, F ) = 1 − x.

Since there are only two lines we again calculate the intersection point and so
the optimal strategy for I is X∗ = (0, 0, 2/3, 1/3).

4. Player II is at a distinct disadvantage since the value of this game is
v = 1/3. Player II in fact would never be induced to play the game unless
player I pays II $1/3 before the game begins. That would make the value
zero and hence a fair game.

Another point to notice is that the optimal strategy for I has him betting
1/3 of the time when he has a losing card (King). This means in an optimal
strategy he should bluff.

1.1.4 Symmetric games

Symmetric games are important classes of 2 person games in which the players
can use the exact same set of strategies and any payoff which player I can
obtain using strategy X can be obtained by player II using the same strategy
Y = X . Such games can be quickly identified by the rule that A = −AT . Any
matrix satisfying this is said to be skew symmetric.

Why is skew symmetry the correct thing? Well, if A is the payoff matrix
to player I, then the entries represent the payoffs to player I and the negative
of the entries, or −A represent the payoffs to player II. If the players switch
roles as row and column players but obtain the same payoffs then A is the
payoff matrix to player I and −AT is the payoff to player II. So, if X = Y we
want the payoffs to player II, namely −AY T to be the same as the payoffs to
player I, namely XA. That is, −AY T = AX = AY, which holds if A = −AT .
If this is so, the matrix must be square and the diagonal elements of A, aii

must be 0. We can say more.

Theorem 1.1.4 For any skew symmetric game v(A) = 0 and if X∗ is optimal
for player I, then it is also optimal for player II.

Proof. Let X be any strategy for I. Then

E(X, X) = X A XT = −X AT XT = −(X A XT )T = −X A XT = −E(X, X).

Therefore E(X, X) = 0.
Let X∗, Y ∗ be a saddle point for the game so that E(X, Y ∗) ≤ E(X∗, Y ∗) ≤

E(X∗, Y ). Then

E(X, Y ) = X A Y T = −X AT Y T = −Y A XT = −E(Y, X).

Hence, from the saddle point definition,

−E(Y ∗, X) ≤ −E(Y ∗, X∗) ≤ −E(Y, X∗) =⇒ E(Y ∗, X) ≥ E(Y ∗, X∗) ≥ E(Y, X∗)

But this says Y ∗ is optimal for I and X∗ is optimal for II and also that
E(X∗, Y ∗) = −E(Y ∗, X∗) =⇒ v(A) = 0. ⊓⊔
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Example 1.9. General solution of 3 × 3 symmetric games For any 3 × 3
symmetric game we must have

A =





0 a b
−a 0 c
−b −c 0





Any of the following conditions gives a pure saddle point:

1. a ≥ 0, b ≥ 0 =⇒ saddle at (1, 1) position
2. a ≤ 0, c ≥ 0 =⇒ saddle at (2, 2) position
3. b ≤ 0, c ≤ 0 =⇒ saddle at (3, 3) position

Here’s why. Let’s assume a ≤ 0, c ≥ 0. In this case if b ≤ 0 we get v− =
max{min{a, b}, 0,−c} = 0 and v+ = min{max{−a,−b}, 0, c} = 0 so there is
a saddle in pure strategies at (2, 2). All cases are treated similarly. To have a
mixed strategy all three of thee must fail.

We next solve the case a > 0, b < 0, c > 0 so there is no pure saddle and
we look for the mixed strategies.

Let player I’s optimal strategy be X∗ = (x1, x2, x3). Then

E(X∗, 1) = −ax2 − bx3 ≥ 0

E(X∗, 2) = ax1 − cx3 ≥ 0

E(X∗, 3) = bx1 + cx2 ≥ 0

Each one is nonnegative since E(X∗, Y ) ≥ 0, for all Y. Now since a > 0, b <
0, c > 0 we get

x3

a
≥

x2

−b
,

x1

c
≥

x3

a
,

x2

−b
≥

x1

c
so

x3

a
≥

x2

−b
≥

x1

c
≥

x3

a
,

and we must have equality. Thus, x3 = a t, x2 = −b t, x1 = c t and since they
must sum to one, t = 1/(a − b + c). We have found the optimal strategies
X∗ = Y ∗ = (a t,−b t, c t). The value, of course is zero.

Example 1.10. Two companies will introduce a number of new products which
are essentially equivalent. They will introduce 1 or 2 products but they each
must also guess how many products their opponent will introduce. If they
introduce the same number of products and guess the correct number the
opponent will introduce the payoff is zero. Otherwise the payoff is determined
by whoever introduces more products and guesses the correct introduction of
new products by the opponent. This accounts for the fact that new products
result in more sales and guessing correctly results in accurate advertising, etc..
This is the payoff matrix to player I.
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Player I / Player II (1,1) (1,2) (2,1) (2,2)
(1,1) 0 1 -1 -1
(1,2) -1 0 -2 -1
(2,1) 1 2 0 1
(2,2) 1 1 -1 0

This game is symmetric. We can drop the 4th row and the 4th column by
dominance and are left with the symmetric game

A =





0 1 −1
−1 0 −2
1 2 0





Since b ≤ 0, c ≤ 0 we have a saddle point at (3, 3) and so v = 0, X∗ =
(0, 0, 1, 0) = Y ∗, each company should introduce 2 new products and guess
that the opponent will introduce 1.

1.2 Matrix games and linear programming

In this section we will formulate any matrix game as a linear programming
problem using the properties 1.0.2. The advantage of doing so is that there is
a very efficient algorithm for solving any linear program, namely, the simplex

method. This means that we can find the value and optimal strategies for a
matrix game of any size. In many respects, this approach makes it unnecessary
to know any other computational approach. The down side is that in general
one needs a computer capable of running the simplex algorithm to solve a
game by the method of linear programming. We will show how to set up the
game in two different ways to make it amenable to the linear programming
method and also the Maple commands to solve the problem.

A linear programming problem is a problem of the form (called the Primal
program):

Minimize z = xcT

subject to x A ≥ b, x ≥ 0

where c = (c1, . . . , cn), x = (x1, . . . , xn), An×m, b = (b1, . . . , bm).
The primal problem seeks to minimize a linear objective function, z(x) =

cT x, over a set of constraints which are also linear. You can visualize what
happens if you try to imagine a plane in 3 dimensions over a convex set.
The minimum and maximum of the plane must occur on the boundary of the
convex set, just as the minimum or maximum of a straight line on an interval
must occur at the endpoints. The method for solving a linear program is to
efficiently go through the boundary points to find the extreme points. That is
essentially the simplex method (developed by George Dantzig during World
War II).
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For any Primal there is a related linear program called the Dual program:

Maximize w = y bT

subject to A yT ≤ cT , y ≥ 0

We will now show how to formulate any matrix game as a linear pro-
gram.We need the primal and the dual to find the optimal strategies for each
player.

Here is the first method to do this. Let A be the game matrix. We may
assume aij > 0 by adding a large enough constant to A if that isn’t true.
Adding a constant won’t change the strategies and will only add a constant
to the value of the game.

Hence we assume that v(A) > 0. Now consider the properties 1.0.2. Player
I looks for a mixed strategy X = (x1, . . . , xn) so that

E(X, j) = XAj = x1 a1j + · · ·xn anj ≥ v, 1 ≤ j ≤ m (1.2.1)

where v > 0 is as large as possible, and
∑

xi = 1, xi ≥ 0. It is player I’s
goal to get the largest value possible. We change variables by setting

pi =
xi

v
, 1 ≤ i ≤ n.

Then
∑

xi = 1 implies that
n
∑

i=1

pi =
1

v
.

Thus maximizing v is the same as minimizing 1/v =
∑

pi. This gives us our
objective. For the constraints, if we divide the inequalities (1.2.1) by v and
switch to the new variables, we get the set of constraints

x1

v
a1j + · · ·

xn

v
anj = p1a1j + · · · + pnanj ≥ 1, 1 ≤ j ≤ m

Now we write this as a linear program.

Player I’s program =

{

Minimize zI = p JT
n =

∑n

i=1 pi, Jn = (1, 1, . . . , 1)
subject to, p A ≥ Jm, p ≥ 0.

Notice that the constraint of the game
∑

i xi = 1 is used to get the objective
function! It is not one of the constraints of the linear program. The set of
constraints is p A ≥ Jm which means p · Aj ≥ 1, j = 1, . . . , m. Also p ≥ 0
means pi ≥ 0, i = 1, . . . , n.

Once we solve player I’s program we will have in our hands the optimal
p = (p1, . . . , pn) which minimizes the objective zI = p JT

n . We will also know
what the minimum zI is, say z∗I .

Unwinding the formulation we find the optimal strategy X for player I
and the value of the game as follows:
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value(A) =
1

∑n
i=1 pi

=
1

z∗I
and xi = pi(value(A)).

Now we look at the problem for Player II. He wants to find a mixed strategy
Y = (y1, . . . , ym), yj ≥ 0,

∑

j yj = 1, so that

y1 ai1 + · · · + ym aim ≤ u, i = 1, . . . , n

with u > 0 as small as possible. Setting qj =
yj

u
we can restate Player II’s

problem as the standard linear programming problem

Player II’s program =

{

Maximize zII = q JT
m, Jm = (1, 1, . . . , 1), m1′s

subject to, A qT ≤ JT
n , q ≥ 0.

Player II’s problem is the dual of player I’s. At the end of solving this program
we are left with the optimal maximizing vector q = (q1, . . . , qm) and the
optimal objective value Z∗

II . We obtain the optimal mixed strategy for player
II and the value of the game from

value(A) =
1

∑m

j=1 qj

=
1

z∗II

and yj = qj(value(A)).

But, how do we know that the value of the game using player I’s program
will be the same as that given by player II’s program? The important duality
theorem gives us what we need.

Remember that if you had to add a number to the matrix to guarantee
that v > 0 then you have to subtract that number from z∗I , and z∗II , in order
to get the value of the game with the starting matrix A.

Theorem 1.2.1 If one of the pair of linear programs (primal and dual) has
a solution then so does the other. If there is at least one feasible solution (i.e.,
a vector which solves all the constraints so the constraint set is nonempty)
then there is an optimal feasible solution for both, and their values, i.e. the
objectives, are equal.

This means that in a game we are guaranteed that z∗I = z∗II and so the
values given by player I’s program will be the same as that given by player
II’s program.

Example 1.11. Find a solution of the game with matrix

A =





−2 1 0
2 −3 −1
0 2 −3





Begin by making all entries positive by adding 4 (other numbers could also
be used) to everything:

A′ =





2 5 4
6 1 3
4 6 1




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Here is player I’s program. We are looking for X = (x1, x2, x3), xi ≥

0,
∑3

i=1 xi = 1, which will be found from the linear program. Setting pi = xi

v
,

where after finding the pi’s, we will set v = 1
p1+p2+p3

and v − 4 is the value

of the game with matrix A, v is the value of the game with matrix A′. Then
xi = vpi will give the optimal strategy for I. Player I’s problem is

Player I’s program =































Minimize zI = p1 + p2 + p3 (= 1
v
)

subject to,
2p1 + 6p2 + 4p3 ≥ 1
5p1 + p2 + 6p3 ≥ 1
4p1 + 3p2 + p3 ≥ 1
pi ≥ 0 i = 1, 2, 3.

We next set up II’s program. We are looking for y = (y1, y2, y3), yj ≥

0,
∑3

j=1 = 1. Setting qj = (yj/v). Player II’s problem is

Player II’s program =































Maximize zII = q1 + q2 + q3 (= 1
v
)

subject to,
2q1 + 5q2 + 4q3 ≤ 1
6q1 + q2 + 3q3 ≤ 1
4q1 + 6q2 + q3 ≤ 1
qj ≥ 0 j = 1, 2, 3.

Having set up each player’s linear programs we solve using the maple com-
mands:

For player I we use

>with(simplex):

>cnsts:={2*x+6*y+4*z >=1,5*x+y+6*z >=1,4*x+3*y+z >=1};

>obj:=x+y+z;

>mimimize(obj,cnsts,NONNEGATIVE);

The minimize command incorporates the constraint that the variables be
nonnegative by the use of the third argument. Maple gives the following so-
lution to this program:

x = p1 = 21/124, y = p2 = 13/124, , z = p3 = 1/124 and p1+p2+p3 = 35/124.

Unwinding this to the original game, we have 35/124 = 1/v =⇒ v(A′) =
124/35. So, the optimal mixed strategy for player I is, using xi = piv, X∗ =
(21/35, 13/35, 1/35) and the value of our original game is v(A) = 124/35−4 =
−16/35.

For player II we use the commands

>with(simplex):

>cnsts:={2*x+5*y+4*z <=1,6*x+y+3*z <=1,4*x+6*y+z <=1};

>obj:=x+y+z;

>maximize(obj,cnsts,NONNEGATIVE);
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Maple gives the solution x = q1 = 13/124, y = q2 = 10/124, z = yq =
12/124 so again q1 + q2 + q3 = 1/v = 35/124, or v(A′) = 124/35. Hence the
optimal strategy for II is

Y ∗ =
124

35
(

13

124
,

10

124
,

12

124
) = (13/35, 10/35, 12/35).

The value of the original game is then 124/35− 4 = −16/35.

1.2.1 A direct formulation without transforming

It is no longer necessary to make the transformations we made in order to turn
a game into a linear programming problem. In this section we give a simpler
and more direct way. We will start from the beginning and recapitulate the
problem.

Recall, that Player I wants to choose a mixed strategy X∗ = (xi
∗) so as

to
Maximize v

subject to the constraints

∑

i

aijx
∗
i = X∗Aj = E(X∗, j) ≥ v, j = 1, . . . , m,

and
n
∑

i=1

x∗
i = 1, xi ≥ 0, i = 1, . . . , n.

This is a direct translation of the properties 1.0.2 which says that X∗ is
optimal and v is the value of the game if and only if, when X∗ is played
against any column for II, the expected payoff must be at least v. Thus, if we
can find a solution of the problem subject to the constraints, it must give the
optimal strategy for I as well as the value of the game. Similarly, Player II
wants to choose a strategy Y ∗ = (yj

∗) so as to

Minimize v

subject to the constraints

∑

j

aijy
∗
j =i AY ∗T = E(i, Y ∗) ≤ v, i = 1, . . . , n,

and
m
∑

j=1

y∗
j = 1, yj ≥ 0, i = 1, . . . , n.

The solution of this dual linear programming problem will give the optimal
strategy for II and the same value as that for player I. We can solve these
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programs directly without changing to new variables. Since we don’t have to
divide by v in the conversion, we don’t need to ensure that v > 0 so we can
avoid having to add a constant to A. Let’s work an example and give the
Maple commands to solve the game.

Example 1.12. In this example we want to solve by the linear programming
method the skew symmetric matrix

A =





0 −1 1
1 0 −1
−1 1 0





Here is the set up for solving this using Maple. We enter the matrix A. For
the row player we define his strategy as X = V ector(3, symbol = x) which
defines a vector of size 3 and uses the symbol x for the components. We could
do this with Y as well but a direct way is to use Y =< y[1], y[2], y[3] > .
Anything to the right of the symbol # is a comment.

>with(LinearAlgebra):with(simplex):

>#Enter the matrix of the game here,row by row:

>A:=Matrix([[0,-1,1],[1,0,-1],[-1,1,0]]);

>#The row players Linear Programming problem:

> X:=Vector(3,symbol= x);

#Defines X as a column vector with 3 components

> B:=Transpose(X).A;

# Used to calculate the constraints, B is a vector.

>cnst:={seq(B[i] >=v,i=1..3),add(x[i],i=1..3)=1};

#The components of B must be >=v and the components of X must sum to 1.

>maximize(v,cnst,NONNEGATIVE,value);

#Player I wants v as large as possible

#Hitting enter will give X=(1/3,1/3,1/3) and v=0.

>#Column Players LP problem:

>Y:=<y[1],y[2],y[3]>;#Another way to set up the vector for Y.

>B:=A.Y;

> cnst:={seq(B[j]<=v,j=1..3),add(y[j],j=1..3)=1};

>minimize(v,cnst,NONNEGATIVE,value);

#Again, hitting enter gives Y=(1/3,1/3,1/3) and v=0.

Since A is skew symmetric we know ahead of time that the value of this
game is 0. Maple gives the optimal strategies

X∗ = (1/3, 1/3, 1/3) = Y ∗
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which checks with the fact that for a symmetric matrix the strategies are the
same for both players.

Now let’s look at a much more interesting example.

Example 1.13. Colonel Blotto Games This is a simplified form of a military
game in which the leaders must decide how many regiments to send to attack
or defend two or more targets. It is an optimal allocation of forces game. In
one formulation, suppose there are 2 opponents (players) we call Red and
Blue. Blue controls 4 regiments and Red controls 3. There are 2 targets of
interest, say A and B. The rules of the game say that the player who sends
the most regiments to a target will win 1 point for the win and 1 point for
every regiment captured at that target. A tie, in which Red and Blue send
the same number of regiments to a target, gives a zero payoff. The possible
strategies for each player consist of the number of regiments to send to A and
the number of regiments to send to B, and so they are a pair of numbers. The
payoff matrix to Blue is

A=

Blue/Red (3,0) (0,3) (2,1) (1,2)
(4,0) 4 0 2 1
(0,4) 0 4 1 2
(3,1) 1 -1 3 0
(1,3) -1 1 0 3
(2,2) -2 -2 2 2

For example, if Blue plays (3, 1) against Red’s play of (2, 1) then Blue
sends 3 regiments to A while Red sends 2. So Blue will win A, which is +1
and then capture the 2 Red regiments for a payoff of +3 for A. But Blue sends
1 regiment to B and Red also sends one to B, so that is considered a tie, or
standoff with a payoff to Blue of 0. So the net payoff to Blue is +3.

This game can be easily solved using Maple as a linear program, but here
we will utilize the fact that the strategies have a form of symmetry which
will simplify the calculations. It seems clear that the Blue strategies (4, 0) and
(0, 4) should be played with the same probability. The same should be true for
(3, 1) and (1, 3). Hence, we may consider that we really only have 3 numbers to
determine for Blue: X = (x1, x1, x2, x2, x3), 2x1 +2x2 +x3 = 1. Similarly, for
Red we need to determine only 2 numbers:Y = (y1, y1, y2, y2), 2y1 + 2y2 = 1.

Red wants to choose y1 ≥ 0, y2 ≥ 0 to make value(A) = v as small as
possible but subject to E(i, Y ) ≤ v, i = 1, 2, 3. This says

4y1 + 3y2 ≤ v, 3y2 ≤ v, and − 4y1 + 4y2 ≤ v.

Now, 4y1 + 3y2 ≤ v implies 3y2 ≤ v so we can drop the second inequality.
Substitute y2 = (1/2 − y1) to eliminate y2 and get

y1 + 3/2 ≤ v,−8y1 + 2 ≤ v.
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The two lines y = x + 3/2, and y = −8x + 2 intersect at x = 1/18, y = 8/18.

2.0

0.1

1.5

x

0.250.20.150.05

1.0

0.0
0.0

0.5

and since the inequalities require that v is above the 2 lines, the smallest v
is at the point of intersection. Thus, y1 = 1/18, y2 = 8/18, v = 28/18. So
Y ∗ = (1/18, 1/18, 8/18, 8/18).

Now, the middle inequality 3y2 = 24/18 < 28/18 and, because it is a
strict inequality, a previous lemma requires that any optimal strategy for
Blue would have 0 probability of using the associated row, that is, x2 = 0.
With that simplification we obtain the inequalities for Blue as

4x1 − 2x3 ≥ v = 28/18, 3x1 + 2x3 ≥ v, and 2x1 + x3 = 1.

The solution of these inequalities yields X∗ = (4/9, 4/9, 0, 0, 1/9).
Naturally, Blue, having more regiments, will come out ahead, and a ratio-

nal opponent (Red) would capitulate before the game even began. Observe
also, that with 2 equally valued targets, it is optimal for the superior force
(Blue) to not divide it’s regiments, but for the inferior force to split it’s regi-
ments, except for a small probability of doing the opposite.

Finally, if we use Maple to solve this problem we use the commands

>with(LinearAlgebra):

>A:=Matrix([[4,0,2,1,[0,4,1,2],[1,-1,3,0],[-1,1,0,3],[-2,-2,2,2]]);

>X:=Vector(5,symbol=x);

>B:=Transpose(X).A;

>cnst:={seq(B[i]>=v,i=1..4),add(x[i],i=1..5)=1);

>with(simplex):

>maximize(v,cnst,NONNEGATIVE,value);

The outcome of these commands is X∗ = (4/9, 4/9, 0, 0, 1/9) and value(A) =
14/9. Similarly, using the commands
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>with(LinearAlgebra):

>A:=Matrix([[4,0,2,1,[0,4,1,2],[1,-1,3,0],[-1,1,0,3],[-2,-2,2,2]]);

>Y:=Vector(4,symbol=y);

>B:=A.Y;

>cnst:={seq(B[i]<=v,i=1..5),add(y[i],i=1..4)=1);

>with(simplex):

>minimize(v,cnst,NONNEGATIVE,value);

results in Y ∗ = (7/90, 3/90, 32/90, 48/90) and again v(A) = 14/9. The op-
timal strategy for Red is not unique and he may play one of many optimal
strategies but all resulting in the same expected outcome.
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2 person Nonzero sum games

The previous sections considered 2 person games in which whatever one player
gains, the other loses. This is far too restrictive for many games, especially
games in economics or politics where both players can win something. In other
words the game does not have to be a constant sum game. The generalization
to zero sum games is considered in the next few sections, namely, we will drop
the zero sum condition and each player may gain or lose depending on their
choice of strategy. We will start with 2 person games where each player will
have his own payoff matrix.

2.1 2 × 2 bimatrix games

In a 2 person nonzero sum game we simply assume that each player has their
own payoff matrix. Suppose the payoff matrices are

A =

(

a11 a12

a21 a22

)

B =

(

b11 b12

b21 b22

)

For example, if player I plays row 1 and player II plays column 2, then the
payoff to player I is a12 and the payoff to player II is b12. In a zero sum game
we always had aij + bij = 0, or more generally aij + bij = k, where k is a fixed
constant. In a nonzero sum game we do not assume that.

Let X = (x, 1−x), Y = (y, 1−y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 be mixed strategies
of I and II, respectively. Denote by

E1(X, Y ) = XAY T = xy(a11−a12−a21+a22)+(a12−a22)x+(a21−a22)y+a22,

E2(X, Y ) = XBY T = xy(b11−b12−b21+b22)+(b12−b22)x+(b21−b22)y+b22,

the expected payoffs to I and II. It is the goal of each player to maximize his
expected payoff assuming the other players are doing their best to maximize
their own payoffs.
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Definition 2.1.1 A pair of mixed strategies (X∗, Y ∗) is a Nash equilibrium
if E1(X, Y ∗) ≤ E1(X

∗, Y ∗) for every mixed X and E2(X
∗, Y ) ≤ E2(X

∗, Y ∗)
for every mixed Y.

Remark 2.1.2 1. This says that neither player can gain any expected payoff
if they choose to deviate from the choice of the equilibrium.

2. It is not hard to see that (X∗, Y ∗) is a Nash equilibrium if

E1(i, Y
∗) =i AY ∗T ≤ X∗AY ∗T , i = 1, . . . , m,

E2(X
∗, j) = X∗Bj ≤ X∗BY ∗T , j = 1, . . . , n.

3. If B = −A a bimatrix game is a zero sum 2 person game and a Nash
equilibrium is the same as a saddle point.

The questions we ask are

1. Is there a Nash equilibrium using pure strategies?
2. Is there a Nash Equilibrium using Mixed strategies?
3. How doe we compute these?

To start we consider the classic example.

Example 2.1. Prisoner’s dilemma. Two criminals have just been caught after
committing a crime. The police interrogate the prisoners by placing them in
separate rooms so they cannot coordinate their stories and no communication
between the prisoners is possible. The goal of the police is to try to get one or
both of them to confess the crime. We consider the two prisoners as the players
in a game in which they have two pure strategies: Confess, or Don’t Confess.
Their prison sentence, if any will depend on whether or not they confess and
agree to testify against the other prisoner. But if they both confess, no benefit
will be gained by testimony which is no longer needed. If neither confesses,
there may not be enough evidence to convict either prisoner of the crime. The
following matrices represent the possible payoffs remembering that they are
set up to maximize the payoff.

Prisoner I/II Confess Don’t Confess
Confess (-5,-5) (0,-20)

Don’t Confess (-20,0) (-1,-1)

The individual matrices for the two prisoners are

A =

(

−5 0
−20 −1

)

B =

(

−5 −20
0 −1

)

The numbers are negative because they represent the number of years of the
sentence and each player wants to maximize the payoff, i.e., minimize their
sentence.
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To see if there is a Nash equilibrium in pure strategies we are looking for
a payoff pair (a, b) which simultaneously has a as the largest number in a
column and b the largest number in a row. Looking at the bimatrix is the
easiest way to find them. The systematic way is to put a bar over the first
number which is the largest in each row and put a bar over the second number
which is the largest in each column. Any pair of numbers which both have
bars is a Nash equilibrium. In the prisoner’s dilemma problem we have

(

(−5,−5) (0,−20)
(−20, 0) (−1,−1)

)

We see that there is a pure Nash and it is at (Confess, Confess), they should
both confess and settle for 5 years in prison each. If either player deviates
from Confess, while the other player still plays Confess, then the payoff to
the player who deviates goes from −5 to −20. But clearly both players can
do better if the both choose Don’t Confess because then there is not enough
evidence to put them in jail for more than 1 year. But there is an incentive for
each player to NOT play Don’t Confess. If One player chooses Don’t Confess
and the other chooses Confess, the payoff to the confessing player is 0, i.e.,
he won’t go to jail at all! The players are rewarded for a betrayal of the other
prisoner and so that is exactly what will happen. The payoff pair (−1,−1)
is unstable in the sense that a player can do better by deviating, assuming
the other player does not, and (−5,−5) is stable because neither player can
improve their payoff. Even if they agree before they are caught to not confess,
it would take extraordinary will power for both players to stick with that
agreement in the face of the numbers.

Example 2.2. The Arms race. Suppose two countries have the choice of devel-
oping nuclear weapons or not. There is a cost of the development as well as
a benefit. Suppose we quantify these using a bimatrix in which each player
wants to maximize the payoff.

Country A \ B Nuclear Status Quo
Nuclear (1,1) (10,5)
Status Quo (-5,10) (1,1)

We see that we have a Nash equilibrium at the pair (1, 1) corresponding to
(Nuclear, Nuclear). The pair (1, 1) when both countries maintain the Status
Quo is NOT a Nash equilibrium because each player can improve their payoff
by deviating from this. Observe too that if one country decides to go Nuclear,
the other country clearly has no choice but to do likewise. The only way that
the situation could change would be to make the benefits of going Nuclear
much less, perhaps by third party sanctions.
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Now we look for ways to find all Nash equilibria for a bimatrix game.

Theorem 2.1.3 A necessary and sufficient condition for (x∗, y∗) associated
with X∗ = (x∗, 1 − x∗), Y ∗ = (y∗, 1 − y∗) to be an equilibrium point of the
game is

1) E1(1, y∗) ≤ E1(x
∗, y∗)

2) E1(0, y∗) ≤ E1(x
∗, y∗)

3) E2(x
∗, 1) ≤ E2(x

∗, y∗)
4) E2(x

∗, 0) ≤ E2(x
∗, y∗)

Proof. To see why this is true we first note that if X∗, Y ∗ is an equilibrium
then the inequalities must hold by definition. So we need only show that they
are sufficient. Let X = (x, 1 − x) and Y = (y, 1 − y) be any mixed strategies.
By the inequalities,

xE1(1, y∗) = x(1 0)AY ∗T = x(a11y
∗ + a12(1 − y∗)) ≤ xE1(x

∗, y∗)

and

(1−x)E1(0, y∗) = (1−x)(0 1)AY ∗T = (1−x)(a21y
∗+a22(1−y∗)) ≤ (1−x)E1(x

∗, y∗).

Add these up to get

xE(1, y∗)+(1−x)E(0, y∗) = x(a11y
∗+a12(1−y∗)+(1−x)(a21y

∗+a22(1−y∗))

≤ E1(x
∗, y∗)

But then, since

x(a11y
∗ + a12(1 − y∗)) + (1 − x)(a21y

∗ + a22(1 − y∗)) = XAY ∗T

we see that

(x, (1 − x))AY ∗T = XAY ∗T = E1(X
∗, Y ∗) ≤ E1(X

∗, Y ∗).

This gives the first part of the definition that X∗, Y ∗ is a Nash equilibrium.
The rest of the proof is similar. ⊓⊔

We want to solve the inequalities (1)-(4).
Now E1(x, y) = XAY T so the inequalities (1) (2) reduce to

Q(1−x)y−q(1−x) ≤ 0, Qxy−qx ≥ 0, Q = a11−a12−a21+a22, q = a22−a12.
(2.1.1)

We consider cases:
Case 1: Q = q = 0.
Then any x ∈ [0, 1], y ∈ [0, 1] solves (2.1.1).
Case 2: Q = 0, q > 0.
Then −q(1−x) ≤ 0, and − qx ≥ 0, and so solutions are x = 0, 0 ≤ y ≤ 1.
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Case 3: Q = 0, q < 0
Then (1 − x) ≤ 0, and x ≥ 0. Solutions are x = 1, 0 ≤ y ≤ 1.
Case 4: Q > 0.
Then Q(1 − x)y − q(1 − x) ≤ 0, Qxy − qx ≥ 0, and solutions are

x = 0 y ≤ q/Q = α

0 < x < 1 y = q/Q = α

x = 1 y ≥ q/Q = α.

Case 5: Q < 0.

x = 0 y ≥ q/Q = α

0 < x < 1 y = q/Q = α

x = 1 y ≤ q/Q = α.

Similarly for the other player let

R = b11 − b12 − b21 + b22, r = b22 − b21 β =
r

R

Then the inequalities become

Rx(1 − y) − r(1 − y) ≤ 0, Rxy − ry ≥ 0.

Case 1: R = 0, r = 0. Solutions are all 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
Case 2: R = 0, r > 0. Solutions are 0 ≤ x ≤ 1, y = 0.
Case 3: R = 0, r < 0. Solutions are 0 ≤ x ≤ 1, y = 1.
Case 4: R > 0. The solutions are

y = 0 x ≤ r/R = β

0 < y < 1 x = r/R

y = 1 x ≥ r/R.

Case 5: R < 0.

y = 0 x ≤ β

0 < y < 1 x = β

y = 1 x ≥ β.

Example 2.3.

A =

(

2 −1
−1 1

)

B =

(

1 −1
−1 2

)

Then Q = 5, q = 2, α = 2/5, R = 5, r = 3, β = 3/5 so that we have 3
equilibria (x, y) = (0, 0), (3/5, 2/5), (1, 1), from which we get all the Nash
points (X∗, Y ∗).
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2.2 Interior Mixed Nash Points by Calculus

When we look for a mixed Nash point in which the rows and columns are
completely mixed, we can use calculus to find the maximum of E1, E2. The
calculus procedure for finding an interior mixed Nash equilibrium is.

1. The expected payoff to I is EI(X, Y ) = XAY T , and the expected payoff
to II is EII(X, Y ) = XBY T .

2. Let xm = 1− (x1 + · · ·+xm−1), yn = 1−
∑n−1

j=1 yj so each expected payoff
is a function only of x1, . . . , xm−1, y1, . . . , yn−1.

3. Solve the equations ∂EI/∂xi = 0, ∂EII/∂yj = 0, i = 1, . . . , m − 1, j =
1, . . . , n − 1.

4. If there is a solution with xi ≥ 0, yj ≥ 0 this is the mixed strategy equi-
librium.

Definition 2.2.1 The rational reaction sets for each player are defined as
follows.

RI = {(X, Y )|EI(X, Y ) = max
p

EI(p, Y )},

RII = {(X, Y )|EII(X, Y ) = max
t

EI(X, t)}.

The set of Nash equilibria is RI ∩ RII .

In the bimatrix game case, if X∗, Y ∗ is an interior Nash, then

n
∑

j=1

y∗
j (ai,j − a1,j) = 0, ∀ i 6= 1

m
∑

i=1

x∗
i (bi,j − b1,j) = 0, ∀ j 6= 1

Example 2.4. Two partners have 2 choices for where to invest their money,
say O1, O2 but they need to agree on joint action. We model this using the
bimatrix

O1 O2

O1 (1,2) (0,0)
O2 (0,0) (2,1)

If Player I chooses O1 and II chooses O1 the payoff to I is 1 and the payoff
to II is 2 units because II prefers to invest the money into O1 more than into
O2. If the players do not agree on how to invest then they receive 0.

To solve this game, first notice that there are 2 pure Nash points at
(O1, O1) and (O2, O2), so total cooperation will be equilibrium. We want to
know if there are any mixed Nash points.

Set

A =

(

1 0
0 2

)

B =

(

2 0
0 1

)

.
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Then E1(x, y) = (x 2(1−x)·(y, 1−y)T = xy+2(1−x)(1−y) = 3xy−2x−2y+2.
Player I wants to make this as large as possible for any fixed 0 ≤ y ≤ 1. Write

E1(x, y) = x(3y − 2) − 2y + 2.

If 3y−2 ≥ 0, E1(x, y) is maximized as a function of x at x = 1. If 3y−2 ≤ 0 the
maximum will occur at x = 0. If 3y−2 = 0 then y = 2/3 and E1(x, 2/3) = 2/3.
Next, we consider E2(x, y) in a similar way. Write

E2(x, y) = (2x 1−x)·(y 1−y)T = 2xy+(1−x)(1−y) = 3xy−x−y+1 = y(3x−1)−x+1.

Player II wants to choose y ∈ [0, 1] to maximize this and that will depend on
the coefficient of y namely, 3x − 1. We see as before that

max
y∈[0,1]

E2(x, y) =







−x + 1, if 0 ≤ x < 1/3 achieved at y = 0;
2x, if 1/3 < x ≤ 1 achieved at y = 1;
2/3, if x = 1/3 achieved at any y ∈ [0, 1].

Here is the graph:

The solid lines form the rational reaction sets of the players. For example,
if player I decides for some reason that he will play O1 with probability
1/2 then player II would rationally play either y = 1 or y = 2/3. Where
the zigzag lines cross are the Nash points. That is, the Nash points are at
(x, y) = (0, 0), (1, 1) and (1/3, 2/3). So either they should always cooperate to
the advantage of one player or the other or player I should play O1 1/3 of the
time and player II should play O1 2/3 of the time. The associated expected
payoffs are:

E1(0, 0) = 2, E2(0, 0) = 1,

E1(1, 1) = 1, E2(1, 1) = 2,

and
E1(1/3, 2/3) = 2/3 = E2(1/3, 2/3).
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Only the mixed strategy Nash point (X∗, Y ∗) = ((1/3, 2/3), (2/3, 1/3)) gives
the same expected payoffs to the two players. This seems to be a problem.
Only the mixed strategy gives the same payoff, but it will result in less for each
player than they could get if they play the pure Nash points. So, permitting
the other player the advantage results in a bigger payoff to both players! If
one player decides to cave, they both can do better, but if both players insist
that the outcome be fair then they both do worse.



3

Quadratic Programming Method for Nonzero

Sum 2 person Games

In this section we present a method of finding all Nash equilibria for arbitrary
2 person nonzero sum games with any number of strategies. It was introduced
by Lemke and Towson and is practically implemented with Maple, but any
nonlinear programming package can solve these problems. Because it can solve
any problem it can also be used to find all mixed saddle points for 2 person
zero sum games because in that case we take B = −A.

Theorem 3.0.2 X∗, Y ∗ is a Nash equilibrium iff they satisfy, along with
scalars p∗, q∗ the program

maxX,Y,p,q XAY T + XBY T − p − q

subject to

AY T ≤ pJm

BT XT ≤ qJn ( equivalently XB ≤ qJT
n )

xi ≥ 0, yj ≥ 0, XJm = 1 = Y Jn

where Jk is the k × 1 column vector of all 1’s.

Here is how the proof goes.
First we show that a strategy pair (X∗, Y ∗) is a Nash equilibrium has two

equivalent formulations:

(∗) X∗AY ∗T ≥ XAY ∗T , ∀X, X∗BY ∗T ≥ X∗BY T , ∀Y.

and

(∗∗) AY ∗T ≤ (X∗AY ∗T )Jm, X∗B ≤ (X∗BY ∗T )JT
n .

Now suppose that (X∗, Y ∗) is a Nash point. Since every possible solution to
the NLP problem must satisfy the constraints AY T ≤ pJm and XB ≤ qJT

n ,
multiply the first on the left by X and the second on the right by Y T to get
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XAY T ≤ pXJm = p, XBY T ≤ qJT
n Y T = q.

Hence, any possible solution gives the objective

XAY T + XBY T − p − q ≤ 0.

But it is easy to show that with p∗ = X∗AY ∗T , q∗ = X∗BY ∗T , we get that
X∗, Y ∗, p∗, q∗ is a feasible solution of the NLP but with objective function
zero. Hence this gives the maximum objective and so is a solution of the NLP.

For the opposite direction, let X1, Y1, p1, q1 be a solution of the NLP and let
X∗, Y ∗, p∗ = X∗AY ∗T , q∗ = X∗BY ∗T be a Nash point for the game. We will
show that X1, Y1 is another Nash point. Since X1, Y1 satisfy the constraints
of NLP we get by multiplying the constraints appropriately

X1AY T
1 ≤ p1, X1BY T

1 ≤ q1.

We know, since we have a maximum objective that it is zero. This says

(X1AY T
1 − p1) + (X1BY T

1 − q1) = 0.

The terms in parentheses are nonpositive and add to zero. That means they
must each be zero. Hence

X1AY T
1 = p1, X1BY T

1 = q1.

Then we write the constraints as

AY T
1 ≤ (X1AY T

1 )Jm, X1B ≤ (X1BY T
1 )JT

n .

This is (**) so X1, Y1 is a Nash. ⊓⊔
Using this theorem and some nonlinear programming we can numerically

solve any 2 person nonzero sum game. Here are the Maple commands:

> with(LinearAlgebra):

>A:=Transpose(<<-1,0,0>|<2,1,0>|<0,1,1>>);

>B:=Transpose(<<1,2,2>|<1,-1,0>|<0,1,2>>);

> X:=<x[1],x[2],x[3]>;

> Y:=<y[1],y[2],y[3]>;

>Cnst:={seq((A.Y)[i]<=p,i=1..3),seq((Transpose(X).B)[i]<=q,i=1..3),

add(x[i],i=1..3)=1,add(y[i],i=1..3)=1};

> with(Optimization);

> objective:=expand(Transpose(X).A.Y+Transpose(X).B.Y-p-q);

> expand(Transpose(X).A.Y);expand(Transpose(X).B.Y);

>QPSolve(objective,Cnst,assume=nonnegative,

iterationlimit=10000,maximize);

>QPSolve(objective,Cnst,assume=nonnegative,iterationlimit 10000,

maximize,initialpoint=({q=1,p=2}));

> NLPSolve(objective,Cnst,assume=nonnegative,maximize);
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This gives us the result p = 0.66, q = 0.66, x[1] = 0, x[2] = 0.66, x[3] = 0.33
and y[1] = 0.33, y[2] = 0, y[3] = 0.66. By changing the initial point we also
find the solution

X =< 0, 1, 0 > and Y =< 1, 0, 0 > .

The commands indicate there are two ways Maple can solve this problem.
First, recognizing the payoff objective function as a quadratic function (actu-
ally even simpler than that) we can use the command QPSolve which special-
izes to quadratic programming problems. Second, in general for any nonlinear
objective function we use NLPSolve.

3.1 Other forms of n person nonzero sum games

If there are n players in a game we assume that each player has its own payoff
function depending on his choice of strategy and the choices of the other
players. Suppose the strategies must take values in sets Qi, i = 1, . . . , n and
the payoffs are

ui : Q1 × · · · × Qn → R.

Here is a formal definition of a Nash point, keeping in mind that each player
wants to maximize their own payoff.

Definition 3.1.1 A collection of strategies q∗ = (q∗1 , . . . , q∗n) is a Nash equi-
librium for the game with payoff functions {ui(q)}, i = 1, . . . , n, if for each
player i = 1, . . . , n, we have

ui(q
∗
1 , . . . , q∗i−1, q

∗
i , q∗i+1, . . . , q

∗
n) ≥ ui(q

∗
1 , . . . , q∗i−1, qi, q

∗
i+1, . . . , q

∗
n), for all qi ∈ Qi.

The point is that no player can do better if he deviates from a Nash point.

Remark 3.1.2 Notice that if there are 2 players and u1 = −u2 then a point
(q∗1 , q∗2) is a Nash point if

u1(q
∗
1 , q∗2) ≥ u1(q1, q

∗
2), and u2(q

∗
1 , q∗2) ≥ u2(q

∗
1 , q2), ∀(q1, q2).

But then

−u1(q
∗
1 , q∗2) ≥ −u1(q

∗
1 , q2) =⇒ u1(q

∗
1 , q∗2) ≤ u1(q

∗
1 , q2)

and putting these together says that

u1(q1, q
∗
2) ≤ u1(q

∗
1 , q∗2) ≤ u1(q

∗
1 , q2), ∀(q1, q2).

This, of course says that (q∗1 , q∗2) is a saddle point of the 2 person zero sum
game.
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In many cases, the problem of finding a Nash point can be reduced to
a simple calculus problem. To do this we need to have the strategy sets Qi

to be open intervals and the payoff functions to have at least two continuous
derivatives because we are going to apply the second derivative test. The steps
involved are

1. Solve
∂ui(q

∗

1
,...,q∗

n)
∂q∗

i

= 0, i = 1, 2, . . . , n.

2. Verify
∂2ui(q

∗

1
,...,q∗

n)
∂2q∗

i

< 0, i = 1, 2, . . . , n.

Example 3.1. Cournot duopoly Suppose there are 2 companies producing
the same gadget. Firm i = 1, 2 chooses to produce the quantity qi ≥ 0, so the
total quantity produced by the 2 companies is q = q1 + q2.

We assume in this crude model that the price of a gadget is a decreasing
function of the total quantity produced by the 2 firms. Let’s take it to be
P (q) = P − q when P ≥ q ≥ 0 and P (q) = 0 when q > P . Suppose also that
it costs firm i = 1, 2 ci dollars per unit gadget so the total cost to produce qi

units is ciqi, i = 1, 2. Assume that

P > c1 + c2

because otherwise it costs more to produce the gadgets than to not produce
them.

Each firm wants to maximize their profit function which, in this case is
given by

u1(q1, q2) = (P − q1 − q2)q1 − c1q1 and u2(q1, q2) = (P − q1 − q2)q2 − c2q2.

So, let’s begin by taking the partials and setting to zero.

∂u1(q1, q2)

∂q1
= 0 =⇒ −2q1 − q2 + P − c1 = 0

∂u2(q1, q2)

∂q2
= 0 =⇒ −2q2 − q1 + P − c2 = 0

Notice that we take the partial of ui with respect to qi not the partial of
each payoff function with respect to both variables. Now solving the resulting
equations gives

q∗1 =
P + c2 − 2c1

3
and q∗2 =

P + c1 − 2c2

3
.

At these points we have

∂2u1(q1, q2)

∂2q1
= −2 < 0 and

∂2u2(q1, q2)

∂q2
2

= −2 < 0.

The total amount the two firms should produce is



3.1 Other forms of n person nonzero sum games 51

q∗ = q∗1 + q∗2 =
P − c1 − c2

3

and q∗ > 0 if P > c1 + c2. The price function is then

P (q∗1 + q∗2) = P − q∗1 − q∗2 = P −
P − c1 − c2

3
=

P + c1 + c2

3
.

Turn it around and suppose that the price is set at P (q1 + q2) = p = P+c1+c2

3 .
Then the total quantity the 2 firms should produce at this price is

q = P − p =
2P − c1 − c2

3
= q∗1 + q∗2 .

So, the quantity of gadgets demanded will be exactly the amount each should
produce at this price. This is called a market equilibrium and it turns out to
be given by the Nash point quantity to produce.

Finally, substituting the Nash point into the profit functions gives the
profit functions

u1(q
∗
1 , q∗2) =

(P + c2 − 2c1)
2

9
and u2(q

∗
1 , q∗2) =

(P + c1 − 2c2)
2

9
.

Notice that the profit of each firm depends on the costs of the other firm.

Example 3.2. The Bertrand Model. We again have two companies making
gadgets but the capacity of the 2 companies is fixed and they can only adjust
prices, not quantities. So the quantity sold is a function of the price set, say
q = P − p. In a classic problem the model says that if the 2 firms charge
the same price, they will split the market evenly, i.e., they sell exactly half of
the total sold. But the company that charges a lower price will capture the
entire market. We have to assume that each company has enough capacity to
make the entire quantity if they capture the whole market. The cost to make
gadgets is still ci, i = 1, 2 dollars per unit. We first assume:

c1 6= c2 and max{c1, c2} < P + min{c1, c2}

The profit function for firm i = 1, 2 assuming that firm 1 sets the price as
p1 and firm 2 sets the price at p2 is

u1(p1, p2) =







p1(P − p1) − c1(P − p1), if p1 < p2;
(p−c1)(P−p)

2 , if p1 = p2 = p ≥ c1;
0, if p1 > p2.

This says that if firm 1 sets the price lower than firm 2, firm 1’s profit will be
(price − cost) × quantity,; if the prices are the same firm 1’s profits will be
(price − cost) × quantity/2,; and zero if firm 1’s price is greater than firm
2’s. Likewise, firm 2’s profit function is
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u2(p1, p2) =







p2(P − p2) − c2(P − p2), if p2 < p1;
(p−c2)(P−p)

2 , if p1 = p2 = p ≥ c2;
0, if p2 > p1.

This problem does NOT have a Nash equilibrium To see why let’s
suppose that there is a Nash point at (p∗1, p

∗
2). By definition,

u1(p
∗
1, p

∗
2) ≥ u1(p1, p

∗
2) and u2(p

∗
1, p

∗
2) ≥ u2(p

∗
1, p2), ∀(p1, p2).

Let’s break this down by considering cases:
Case 1. p∗1 > p∗2 Then it should be true that

u1(p
∗
1, p

∗
2) = 0 ≥ u1(p1, p

∗
2), ∀p1.

But if we take any p1 < p∗2 the right side will be positive and so this cannot
hold.

Case 2. p∗1 < p∗2. Then it should be true that

u2(p
∗
1, p

∗
2) = 0 ≥ u2(p

∗
1, p2), ∀p2.

But if we take any p2 < p∗1 the right side will be positive and again this cannot
be true. So the only case left is...

Case 3. p∗1 = p∗2. But then we must have

u1(p
∗
1, p

∗
2) = (p∗1 − c1)(P − p∗1)/2 ≥ u1(p1, p

∗
2), ∀p1.

If we take p1 = p∗1 − ε < p∗2 with really small ε > 0 so that

u1(p
∗
1, p

∗
2) =

(p∗1 − c1)(P − p∗1)

2
< u1(p

∗
1 − ε, p∗2) = (p∗1 − ε − c1)(P − p∗1 + ε).

The reader should check how small ε should be to see that this is true.
So, in all cases, we can find prices so that the condition for a Nash point

is violated and so there is no Nash equilibrium.
What’s the problem here? It is that neither player has a continuous profit

function. By lowering the price just below the competitor the player with the
lower price can capture the entire market.

Example 3.3. The Stackelberg Model In this model we will assume that
there is a dominant firm, say Player I, who will announce his production
publicly. Then player II will decide how much to produce.

Suppose firm 1 announces that it will produce q1 at cost c1 dollars per
unit. It is then up to firm 2 to decide how much q2 at cost c2 it will produce.
The price per unit will be then p(q1, q2) = (P−q1−q2)

+. The profit functions
will be

u1(q1, q2) = (P − q1 − q2)q1 − c1q1 and u2(q1, q2) = (P − q1 − q2)q2 − c2q2.
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These are the same as before but now q1 is fixed as given. It is not variable
when firm 1 announces it. So what we are really looking for is the best response
of firm 2 to the announcement q1, that is firm 2 wants to know how to choose
q2 = q2(q1) so as to

Maximize u2(q1, q2(q1)).

This is given by

q2(q1) =
P − q1 − c2

2
.

This is the best firm 2 can do no matter what firm 1 announces. But firm 1
will know that firm 2 will do that! So, firm 1 should choose q1 to maximize
its own profit function

u1(q1, q2(q1)) = q1(P − q1 − q2(q1))− c1q1 = q1(P − q1 −
P − q1 − c2

2
)− c1q1.

Firm 1 want to choose q1 to make this as large as possible. By calculus we
find that

q∗1 =
P − 2c1 + c2

2
, and u1(q

∗
1 , q∗2) =

(

P − 2c1 + c2

2

)2

and q∗2 = q2(q
∗
1) = P+2c1−3c2

4 .
In the case c1 = c2 = c the reader should check that firm 1 produces

q∗1 , the monopoly quantity if there was no firm 2, firm 2 produces less than
the amount it would produce without the information announcement from
firm 1. In addition, firm 1’s profits will be greater than the profit without
the announcement and firm 2’s will be less. The total amount to be produced
in Stackelberg is 3

4 (P − c) > 2
3 (P − c), the total amount produced without

information. Since the price function is decreasing in the quantity produced,
this says that the Stackelberg price will be less than the price without the
announcement. In other words, firm 1, by sending out the information, will
make more money, firm 2 will make less, the consumer will pay less, and more
will be produced. Everyone is better off except firm 2.
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Cooperative games

There are n > 1 players numbered N = {1, 2, . . . , n}. We consider a game in
which the players may choose to cooperate by forming coalitions. A coalition

is any subset S ⊂ N, or numbered collection of the players. Coalitions form
in order to benefit every member of the coalition so that each member might
receive more than he could on his own. In this section we try to determine a
fair allocation of the benefits to each member of a coalition. First we need to
quantify the benefits of a coalition through the use of a real valued function,
called the characteristic function, which quantifies the total reward for forming
the coalition. The characteristic function of a coalition S ⊂ N is the largest
guaranteed payoff to the coalition.

Definition 4.0.3 Any function v : P(N) → R satisfying v(∅) = 0 and
v(N) ≥

∑n
i=1 v(i) is a characteristic function (of an n person cooperative

game).

In other words, the only condition placed on a characteristic function is
that the benefit of the empty coalition should be 0 and the benefit of the
grand coalition N , consisting of all the players, should be at least the sum
of the benefits of the individual players if no coalitions form. That is, every
one pulling together should do better than each player on his own. With that
much flexibility games may have more than one characteristic function.

Example 4.1. 1.Suppose there is a factory with N workers each doing the same
task. If each worker earns the same amount b dollars, then we can take the
characteristic function to be v(S) = b|S|, where |S| is the number of workers
in S.

2. Suppose the owner of a car, labeled player 1, offers it for sale for S$.
There are 2 customers interested in the car. Customer C, labelled player 2,
values the car at c and customer D, labelled player 3, values it at d. Assume
the price is nonnegotiable. This means that if S > c and S > d, then no deal
will be made. We will assume then that S < min{c, d}, and, for definiteness we
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may assume S < c ≤ d. The possible coalitions are 123, 12, 13, 23, 1, 2, 3, ∅.
We are dropping the braces in the notation for a coalition.

It requires a seller and a buyer to reach a deal. Therefore, we may define
the characteristic function as follows:

v(123) = d, v(1) = S, v(∅) = 0

v(13) = d, v(12) = c, v(23) = 0,

v(2) = v(3) = 0.

Why? Well, v(123) = d because the car will be sold for d, v(1) = S because
the car is worth S to player 1, v(13) = d because 1 will sell the car to 3 for
d > S, v(12) = c because the car will be sold to 2 for c > S, etc..

3. Suppose a customer wants to buy a bolt and a nut for the bolt. There
are 3 players but player 1 owns the bolt and players 2 and 3 each own a bolt. A
bolt together with a nut is worth 5. We could define a characteristic function
for this game as

v(123) = 5, v(12) = v(13) = 5, v(1) = v(2) = v(3) = 0, and v(∅) = 0.

Example 4.2. Here is a much more complicated but systematic way to create
a characteristic function given any cooperative game. The idea is to create a
2 person zero sum game in which a given coalition is played against a pure
opposing coalition consisting of everybody else. The characteristic function
will be the value of the game associated with each coalition S.

Precisely, suppose we have a coalition of players S ⊂ N. Consider the 2
person zero sum game played by S against N − S, i.e., S is going to play
against the coalition consisting of all the other players. Any such game, as a
2 person zero sum game, has a value if the players use mixed strategies we
denote by v(S) = value(S) and

v(S) = max
X∈XS

min
Y ∈YN−S

∑

i∈S

Ei(X, Y ) = min
Y ∈YN−S

max
X∈XS

∑

i∈S

Ei(X, Y ).

Here XS denotes the set of mixed strategies for the coalition S and YN−S

is the set of mixed strategies for the opposing coalition N − S. If S = ∅ we
define value(S) = 0. This way of defining v(S) uses the expected sum over
all of the members in the coalition S of the expected payoffs to player i ∈ S.
The example following will show exactly how to calculate that.

It is not hard to check that value(S) as we let S range over all possible
coalitions satisfies the conditions to be a characteristic function. For each
coalition S, value(S) = v(S) represents the least amount the coalition S can
get no matter what the opposing coalition N − S does.

Let’s work out a specific example using a 3 player game.
Suppose we have a 3 player game with the following matrices:



4 Cooperative games 57

3 playsA P layer 2
A B

Player 1 A (1, 1, 0) (4,−2, 2)
B (1, 2,−1) (3, 1,−1)

3 playsB P layer 2
A B

Player 1 A (−3, 1, 2) (0, 1, 1)
B (2, 0,−1) (2, 1,−1)

Each player has the two pure strategies A and B. Because there are 3 players,
in matrix form this could be represented in 3 dimensions (a cube 3 × 3 × 3
matrix). That is a little hard to write down so instead we have broken this
into 2 2×2 matrices. Each matrix assumes that player 3 plays a fixed strategy.
So, now, we want to find the characteristic function of this game. We need to
consider all the possible 2 player coalitions {12}, {13}, {23} versus the single
player coalitions.

1. Play S = {12} versus {3}. So, players 1 and 2 team up against player
3. We first write down the associated matrix game.

12 vs 3 Player 3
A B

Player 12 AA 2 −2
AB 2 1
BA 3 2
BB 4 3

For example, if 1 plays A and 2 plays A and 3 plays B, the payoffs are (−3, 1, 2)
and so the payoff to player 12 is -3+1=-2, the sum of the payoff to player 1
and player 2 which is our coalition. Now we calculate the value of the zero
sum 2 person game with this matrix to get the value(12 vs 3)=3 and we write
v(12) = 3. Observe there is a saddle point at BB vs B. Consequently, in the
game {3} vs {12} we would get v(3) = −1.

2. Play S = {13} versus {2}. The game matrix is

13 vs 2 Player 2
A B

Player 13 AA 1 6
AB −1 1
BA 0 2
BB 1 1

We see that the value of this game is 1 so that v(13) = 1. In the game {2}

versus {13} we have 2 as the row player and the matrix
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2 vs 13 13
AA AB BA BB

2 A 1 1 2 0
B −2 1 1 1

The value of this game is 1/4 and so v(2) = 1/4.
Continuing in this way we summarize that the characteristic function for

this 3 person game is

v(1) = 1, v(2) = 1/4, v(3) = −1

v(12) = 3, v(13) = −1, v(23) = 1

v(123) = 4

The value v(123) = 4 is obtained by taking the largest sum of the payoffs
which they would achieve if they all cooperated.

All characteristic functions, including the one defined in the preceding
example, must satisfy specific properties which are listed next.

Properties of characteristic functions:

1. v(∅) = 0.
2. v(S ∪ T ) ≥ v(S) + v(T ), ∀S, T ⊂ N, S ∩ T = ∅. This is called superad-

ditivity. It says that the benefits of the larger coalition S ∪ T must be at
least the total benefits of the individual coalitions S and T.

3. Any game with v(S ∪ T ) = v(S) + v(T ), ∀S, T ⊂ I, S ∩ T = ∅, is called
an inessential game.

4. A game is inessential if and only if v(N) =
∑n

i=1 v(i). An essential game
therefore is one with v(N) >

∑n

i=1 v(i).

The word inessential implies that these games are not important. That
turns out to be true. The reason is that they turn out to be easy to analyze.

We need a basic definition. Recall that v(N) represents the reward avail-
able if all players cooperate.

Definition 4.0.4 Let xi be the share of the value of v(N) received by player
i = 1, 2, . . . , n. A vector x = (x1, . . . , xn) is an imputation if

• xi ≥ v(i) (individual rationality)
•
∑n

i=1 xi = v(N) (group rationality)

The imputation x is also called a payoff vector or an allocation.

Remark 4.0.5 1. It is possible for xi to be a negative number!
2. Individual rationality means that the share received by player i should

be at least what he could get on his own. Each player is rational.
3. Group rationality means that the total rewards to all of the individuals

should equal the total rewards available by cooperation.
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4. Any inessential game (i.e., v(N) =
∑n

i=1 v(i)) has one and only one im-
putation and it is x = (v(1), . . . , v(n)). These games are uninteresting because
there is no incentive for any of the players to form any sort of coalition.

The main objective in cooperative game theory is to determine the impu-
tation which results in a fair allocation of the total rewards. Of course this
will depend on the definition of fair. That word is not at all precise. If you
change the meaning of fair you will change the imputation.

We begin by presenting a way to transform a given characteristic func-
tion for a cooperative game to one which is frequently easier to work with.
It is called the (0,1) normalization of the original game. This is not strictly
necessary but it does simplify the computations in many problems. The nor-
malized game will result in a characteristic function with v(i) = 0, v(N) = 1.
The proof of the lemma will show how to make the conversion.

Lemma 4.0.6 Any essential game with characteristic function v′ has a (0, 1)
normalization with characteristic function v.

Proof. Consider the n + 1 system of equations for constants c, ai, 1 ≤ i ≤ n,
given by

v(i) = cv′(i) + ai = 0, 1 ≤ i ≤ n,

v(N) = cv′(N) +

n
∑

i=1

ai = 1.

Solving this system we get

c =
1

v′(N) −
∑

v′(i)
> 0, ai = −

v′(i)

v′(N) −
∑

i v′(i)
.

Then, for any coalition S ⊂ N define the characteristic function

v(S) = cv′(S) +
∑

i∈S

ai, for all S ⊂ N.

The reader can verify that v(N) = 1 and v(i) = 0, i = 1, 2, . . . , n. ⊓⊔

Example 4.3. In the 3 person nonzero sum game considered above we found
the (unnormalized) characteristic function to be

v(1) = 1, v(2) = 1/4, v(3) = −1

v(12) = 3, v(13) = −1, v(23) = 1

v(123) = 4

To normalize this game we compute
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c =
1

v(N) −
∑3

i=1 v(i)
=

1

1 − 1/4
=

4

15
, and ai = −

4

15
v(i).

Let’s denote the normalized characteristic function by v̄. We get

v̄(i) = 4/15v(i) + ai = 0

v̄(12) = 4/15v(12) + a1 + a2 = 7/15

v̄(13) = 4/15v(13) + a1 + a3 = 4/15

v̄(23) = 4/15v(23) + a2 + a3 = 7/15

v̄(123) = 4/15v(123) + a1 + a2 + a3 = 1.

Remark 4.0.7 If we have an imputation for an unnormalized game what does
it become for the normalized game? If x′ = (x′

1, . . . , x
′
n) is an imputation for

v′ then the imputation for v becomes x = (x1, . . . , xn) where xi = cx′
i +ai, i =

1, 2, . . . , n and the constants c and ai are the same as in the lemma.
The set of imputations for the original game is

X ′ = {x′ = (x′
1, . . . , x

′
n) | x′

i ≥ v′(i),

n
∑

i=1

x′
i = v′(N)}.

For the normalized game, indeed for any game with v(i) = 0, v(N) = 1, it
becomes

X = {x = (x1, . . . , xn) | xi ≥ 0,
n
∑

i=1

xi = 1}.

In the rest of this section we let X denote the set of imputations x. We
look for an x ∈ X as a “solution” to the game. The problem is the definition
of the word “solution”. It is as vague as the word “fair”. We are seeking an
imputation which, in some sense, is fair and allocates a fair share of the payoff
to each player. To get a handle on the idea of fair we introduce the following
subset of X.

Definition 4.0.8 The reasonable set R ⊂ X is the set

R = {x ∈ X | xi ≤ max
T∈Πi

{v(T ) − v(T − i)}, i = 1, 2, . . . , n},

where P i is the set of all coalitions for which player i is a member. So, if
T ∈ P i then i ∈ T ⊂ N, and T − i denotes the coalition T without the player
i.

In other words, the reasonable set is the set of imputations so that the
amount allocated to each player is no greater than the maximum benefit that



4 Cooperative games 61

the player brings to any coalition. The difference v(T )−v(T−i) is the measure
of the rewards for coalition T due to player i. The reasonable set gives us a
first way to reduce the size of X and try to focus in on a solution.

If the reasonable set has only one element, which is extremely unlikely
for most games, then that is our solution. If there are many elements in R
we need to cut it down further. In fact we need to cut it down to the core

imputations. Here is the definition.

Definition 4.0.9 Let S ⊂ N be a coalition and let x ∈ X. The excess of
coalition S ⊂ N for imputation x ∈ R is defined by

e(S, x) = v(S) −
∑

i∈S

xi.

The core of the game is

C(0) = {x ∈ X | e(S,x) ≤ 0, ∀S ⊂ N} = {x ∈ X | v(S) ≤
∑

i∈S

xi, ∀S ⊂ N}.

The ε−core, for −∞ < ε < +∞, is

C(ε) = {x ∈ X | e(S, x) ≤ ε, ∀S ⊂ N, S 6= N, S 6= ∅}

Let ε1 ∈ (−∞,∞) be the smallest ε for which C(ε) 6= ∅. The least core

LC = X1 is C(ε1). It is possible for ε1 to be positive, negative, or zero.

Remark 4.0.10 1. The idea behind the definition of the core is that an im-
putation x is a member of the core if no matter which coalition, S, is formed
the total payoff given to the members of S, namely

∑

i∈S xi, must be at least
as large as v(S), the maximum possible benefit of forming the coalition S. If
e(S,x) > 0 this would say that the maximum possible benefits of joining the
coalition S is greater than the total allocation to the members of S using the
imputation x. That would mean that the members of S would not be very
happy with x and they would move to improve their allocation by moving to
a different imputation. In that sense, if x ∈ C(0) then e(S,x) ≤ 0 for every
coalition S and so there would be no incentive for any coalition to try to use a
different imputation. Likewise, if x ∈ C(ε), then the measure of dissatisfaction
of a coalition with x is limited to ε.

2. It is possible for the core of the game, C(0), to be empty, but there
will always be some ε ∈ (−∞,∞) so that C(ε) 6= ∅. The least core uses the
smallest such ε.

3. It should be clear, since C(ε) is just a set of inequalities, that as ε
increases, C(ε) gets bigger, and as ε decreases, C(ε) gets smaller. So, the idea
is that we should shrink (or expand if necessary) C(ε) by adjusting ε until we
get one and only one imputation in it, if possible.

4. We will see shortly that C(0) ⊂ R, every allocation in the core is always
in the reasonable set.
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Example 4.4. We have the characteristic function in a 3 player game v′(1) =
1, v′(2) = 1/4, v′(3) = −1, v′(12) = 3, v′(13) = 1, v′(23) = 1, v′(123) = 4. This
is an essential game so we normalize to get the characteristic function we work
with.

v(i) = 0, v(123) = 1, v(12) = 7/15, v(13) = 4/15, v(23) = 7/15.

The reasonable set is easy to find and it is

R = {(x1, x2, 1 − x1, x2)|x1 ≤ 8/15, x2 ≤ 11/15, 7/15 ≤ x1 + x2 ≤ 1.}

Here is a graph of R :
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The Reasonable Set      

Now let’s calculate the ε−core for any ε ∈ (−∞,∞). The ε−core is

C(ε) = {x ∈ X | e(S, x) ≤ ε, ∀S ⊂ N, S 6= N, S 6= ∅}
= {x1 ≥ 0, x2 ≥ 0, 7/15− x1 − x2 ≤ ε,−11/15 + x2 ≤ ε,−8/15 + x1 ≤ ε,

−x1 ≤ ε,−x2 ≤ ε,−1 + x1 + x2 ≤ ε}.

We have used the fact that x1 + x2 + x3 = 1.
By working with the inequalities in C(ε) we can verify that the smallest ε

so that C(ε) 6= ∅ is ε1 = −8/30. That means that the least core is

C(ε1) = X1 = {(x1, x2, 1−x1−x2) | 4/15 ≥ x1 ≥ 0, 7/15 ≥ x2 ≥ 0, x1+x2 = 11/15}.

It seems that the core C(0) would be the good imputations and so would be
considered the solution of our game if in fact C(0) contained exactly one point.
Unfortunately, the core may contain many points, or may even be empty. Here
is an example of a game with an empty core.

Example 4.5. Suppose the characteristic function of a 3 player game is given
by
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v(123) = 1 = v(12) = v(13) = v(23), and v(1) = v(2) = v(3) = 0.

The set of imputations is then ( this is a zero-one game)

X = {x = (x1, x2, x3) | xi ≥ 0,

3
∑

i=1

xi = 1}.

To calculate the reasonable set R we need to find

xi ≤ max
T∈Πi

{v(T ) − v(T − i)}, i = 1, 2, 3.

Starting with P1 = {1, 12, 13, 123} we calculate

v(1) − v(1 − 1) = 0, v(12) − v(2) = 1, v(13)− v(3) = 1, v(123)− v(23) = 0

so x1 ≤ max{0, 1, 1, 0} = 1. This is true for x2 as well as x3. So all we get
from this is R = X, all the imputations are reasonable.

Next we get C(0) = {x ∈ X | v(S) ≤
∑

i∈S xi, ∀S ⊂ N}. If x ∈ C(0) we
calculate

e(i,x) = v(i) − xi = −xi ≤ 0, e(12,x) = 1 − (x1 + x2) ≤ 0

and, in likewise fashion,

e(13,x) = 1 − (x1 + x3) ≤ 0, e(23,x) = 1 − (x2 + x3) ≤ 0,

The set of inequalities we have to solve are

x1 + x2 ≥ 1, x1 + x3 ≥ 1, x2 + x3 ≥ 1, x1 + x2 + x3 = 1, xi ≥ 0.

But there is no x ∈ X which satisfy these, so C(0) = ∅.

The excess function e(S,x) is a measure of dissatisfaction (especially if
e(S,x) > 0), of S with the imputation x. So it makes sense that the best
imputation would minimize the largest dissatisfaction over all the coalitions.
This leads us to one possible definition of a solution.

Definition 4.0.11 An allocation x∗ ∈ X is a solution to the cooperative game
if

min
x∈X

max
S

e(S, x) = max
S

e(S, x∗)

so that x∗ minimizes the maximum excess for any coalition S.

Remark 4.0.12 Maple can give us a simple way of determining if the core
is empty. Consider the linear program:

Minimize z = x1 + · · · + xn

Subject to v(S) ≤
∑

i∈S

xi, for every S ⊂ N.

It is not hard to check that C(0) is not empty if and only if the linear program
has a minimum, say z∗, and z∗ ≤ v(N). If the game is normalized, then we
need z∗ ≤ 1.
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Let’s begin looking for the solution by showing that the core must be a
subset of the reasonable set.

Lemma 4.0.13 C(0) ⊂ R.

Proof. We may assume the game is in normalized form because we can always
transform it to one that is and then work with that one. So v(N) = 1, v(i) =
0, i = 1, . . . , n. Let x ∈ C(0). If x /∈ R there is j such that

xj > max
T∈Πj

v(T ) − v(T − j).

This means that for every T ⊂ N with j ∈ T , xj > v(T ) − v(T − j) and so
the amount allocated to player j is larger than the amount of his benefit to
any coalition. Take T = N . Then

xj > v(N) − v(N − j) = 1 − v(N − j).

But then, v(N − j) > 1 − xj =
∑

i6=j xi and so e(N − j,x) > 0 which means
x /∈ C(0). ⊓⊔

The next theorem formalizes the idea above that when e(S,x) ≤ 0 for all
coalitions, then the player should be happy with the imputation x and would
not want to switch to another one.

Theorem 4.0.14 The core of a game is the set of all undominated imputa-
tions for the game. That is,

C(0) = {x ∈ X |there is no y ∈ X & S ⊂ N,

such that yi > xi, ∀ i ∈ S, &
∑

i∈S

yi ≤ v(S)}.

Proof. Call the right hand side the set B. We have to show C(0) ⊂ B and
vice versa.

Let x ∈ C(0) and suppose x /∈ B. Then there is y ∈ X and S ⊂ N such
that yi > xi for all i ∈ S and v(S) ≥

∑

i∈S yi. Summing on i ∈ S this shows

v(S) ≥
∑

i∈S

yi >
∑

i∈S

xi =⇒ e(S,x) > 0,

contradicting the fact that x ∈ C(0).
Now let x ∈ B. If x /∈ C(0) there is S ⊂ N so that v(S) >

∑

i∈S xi. Let
ε = v(S) −

∑

i∈S xi > 0. Let α = 1 − v(S) ≥ 0. Let s = |S|, the number of
points in S, and

zi =

{

xi + ε
s
, if i ∈ S;

α
n−s

, if i /∈ S.

We will show that z = (z1, . . . , zn) is an imputation and z dominates x, i.e.,
z is a better allocation for the members of S than is x.
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First zi ≥ 0 and

n
∑

i=1

zi =
∑

S

xi +
∑

S

ε

s
+
∑

N−S

α

n − s
=
∑

S

xi + ε + α = v(S) + 1 − v(S) = 1.

Therefore z is an imputation.
Next we show z is a better imputation than is x for the coalition S. If i ∈ S

zi = xi + ε
s

> xi and
∑

i∈S zi =
∑

i∈S xi + ε = v(S). Therefore z dominates
x. But this says x /∈ B and that is a contradiction. Hence B ⊂ C(0). ⊓⊔

Example 4.6. This example will show what we can do when the game has an
empty core C(0). We will see that when we calculate the least core X1 = C(ε),
where ε is the smallest value for which C(ε) 6= ∅, we will obtain a reasonable
fair allocation (and only one).

Suppose Bill has 150 sinks to give away to the whoever shows up to take
them away. Amy(1), Agnes(2), and Agatha(3) simultaneously show up to take
as many of the sinks as their trucks can haul. Amy can haul 45, Agnes 60 and
Agatha 75, for a total of 180, 30 more than the maximum of 150. The wrinkle
in this problem is that the sinks are too heavy for any one person to load onto
the trucks so they must cooperate in loading the sinks. The question is: how
many sinks should be allocated to each person?

Define the characteristic function v′(S) as the number of sinks the coalition
S ⊂ N = 1, 2, 3 can load. We have v′(i) = 0, i = 1, 2, 3, since they must
cooperate to receive any sinks at all, and

v′(12) = 105, v′(13) = 120, v′(23) = 135, v′(123) = 150.

It will be easier to not normalize this problem. In that case we calculate

C(ε) = {x ∈ X |e(S, x) ≤ ε, ∀S ( N}
= {x ∈ X |v(S) −

∑

i∈S xi ≤ ε}
= {x|105 ≤ x1 + x2 + ε, 120 ≤ x1 + x3 + ε,

135 ≤ x2 + x3 + ε,−xi ≤ ε}

We know that x1 + x2 + x3 = 150 so we obtain as conditions on ε that

120 ≤ 150 − x2 + ε, 135 ≤ 150 − x1 + ε, 105 ≤ x1 + x2 + ε.

We see that 45 ≥ x1 + x2 − 2ε ≥ 105 − 3ε implying that ε ≥ 20. This is in
fact the smallest ε = 20 making C(ε) 6= ∅. Of course that means that the core
C(0) would be empty. Using ε = 20 we calculate C(20) = {x1 = 35, x2 =
50, x3 = 65}. Hence the fair allocation is to let Amy have 35 sinks, Agnes 50,
and Agatha 65 sinks and they all cooperate. Notice that C(0) = ∅.

We conclude that our fair allocation of sinks is as follows
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Player Truck Capacity Allocation
Amy 45 35
Agnes 60 50
Agatha 75 65

Total 180 150

Observe that each player in the fair allocation gets 10 less than the capacity
of the truck. It seems that this is certainly a reasonably fair way to allocate
the sinks. That is, there is an undersupply of 30 sinks so each player will
receive 30/3 = 10 less than their truck can haul.

In the next example we will determine a necessary and sufficient condition
for any cooperative game with 3 players to have a nonempty core.

Example 4.7. We take N = {1, 2, 3} and a characteristic function in normal-
ized form

v(i) = v(∅) = 0, i = 1, 2, 3, v(123) = 1, v(12) = a12, v(13) = a13, v(23) = a23.

Of course we have 0 ≤ aij ≤ 1. We can state then the proposition.

Proposition 4.0.15 For the 3 person cooperative game with normalized char-
acteristic function v we have C(0) 6= ∅ if and only if

a12 + a13 + a23 ≤ 2.

Proof. We have

C(0) = {(x1, x2, 1 − x1 − x2) | a12 ≤ x1 + x2,

a13 ≤ x1 + (1 − x1 − x2) = 1 − x2, a23 ≤ 1 − x1}.

So, x1 + x2 ≥ a12, x2 ≤ 1 − a13, and x1 ≤ 1 − a23. Adding the last two says
x1 + x2 ≤ 2− a12 − a13 so that a12 ≤ 2− a12 − a13 so that if C(0) 6= ∅ it must
be true that a12 + a13 + a23 ≤ 2.

For the other side, if a12 + a13 + a23 ≤ 2 then we can find numbers c1 ≥
0, c2 ≥ 0, c3 ≥ 0 so that

(a12 + c1) + (a13 + c2) + (a23 + c3) = 2.

Define the imputation

x = (1 − (a13 + c2), 1 − (a23 + c3), 1 − (a12 + c1)) = (x1, x2, x3).

Then x1 + x2 + x3 = 1. Furthermore,

x1 + x2 = 2 − [(a13 + c2) + (a23 + c3) = a12 + c1 ≥ a12.

Similarly, x2 ≤ 1 − a13 and x1 ≤ 1 − a23. Hence x ∈ C(0) and so C(0) 6= ∅.
⊓⊔
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Remark 4.0.16 This remark summarizes the ideas behind the use of the least
core.

1. Remember e(S,x) is the level of dissatisfaction of the coalition S with
the allocation x. The larger e(S,x) is the less x will be acceptable to S.

2. For a given grand allocation x, the coalition which least objects to x is
the coalition satisfying

e(S0,x) = max
S(N

e(S,x).

For each fixed coalition S, the allocation giving the minimum dissatisfaction
is

e(S,x0) = min
x∈X

e(S,x).

3. The value of ε giving the least ε−core is

ε1 := min
x∈X

max
S(N

e(S,x).

4. The point of calculating the ε−core is that the core is not a sufficient
set to ultimately solve the problem in the case when the core C(0) is (i)empty,
or (ii) consists of more than one point. In case (ii) the question of course
is which point should be chosen as the fair allocation. The ε−core seeks to
answer this question by shrinking the core at the same rate from each side of
the feasible set until we reach a single point. We can use Maple to do this and
here are the commands:

> with(simplex):

> obj:=z

> cnsts:={7/15-x-y<=z,y-11/15<=z,x-8/15<=z,

-x<=z,-y<=z,x+y<=1+z};

> minimize(obj,cnsts);

> with(plots):subs(z=0,cnsts);

> fcnsts := ;

> #This is a plot of the core:

> inequal(fcnsts,x=0..1,y=0..1,optionsfeasible=(color=red),

> optionsopen=(color=blue,thickness=2),

> optionsclosed=(color=green, thickness=3),

> optionsexcluded=(color=yellow));

> #The next command animates the shrinking of the core to a point.

>animate(inequal,[7/15-x-y<=z,y-11/15<=z,x-8/15<=z,

-x<=z,-y<=z,x+y<=1+z\},

x=0..1,y=0..1,

optionsfeasible=(color=red),

optionsopen=(color=blue,thickness=2),

optionsclosed=(color=green, thickness=3),

optionsexcluded=(color=yellow)],z=-1..0,frames=50);
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The minimum value z = ε is the smallest ε so that the constraint set is
nonempty. Hence C(z) is the least ε-core.

4.1 The Nucleolus

The core C(0) might be empty but we can find an ε so that C(ε) is not empty.
We can fix the empty problem. Even if C(0) is not empty, it may contain more
than one point and again we can use C(ε) to maybe shrink the core down to
one point. The problem is what happens when the least core C(ε) itself has
too many points.

In this section we will answer the question of what to do when the least
core C(ε) contains more than one point. Remember that e(S,x) = v(S) −
∑

i∈S xi and the larger the excess, the more unhappy the coalition S is with
the allocation x. So, no matter what, we want the excess to be as small as
possible for all coalitions and we want the imputation which achieves that.

Let’s begin by working through an example.

Example 4.8. Let us take the normalized characteristic function for the 3
player game

v(12) = 4/5, v(13) = 2/5, v(23) = 1/5 and v(123) = 1, v(i) = 0, i = 1, 2, 3.

Step 1. Calculate the least core.

C(ε) = {(x1, x2, x3) ∈ X | e(S, x) ≤ ε, ∀S ( N}

= {(x1, x2, 1 − x1 − x2)| − ε ≤ x1 ≤ 4/5 + ε,

−ε ≤ x2 ≤ 3/5 + ε, 4/5− ε ≤ x1 + x2 ≤ 1 + ε}

We calculate that the smallest ε for which C(ε) 6= ∅ is ε1 = −1/10 and
then

C(ε1 = −1/10) = {(x1, x2, 1 − x1 − x2)|x1 ∈ [2/5, 7/10],

x2 ∈ [1/5, 1/2], x1 + x2 = 9/10}.

This is a line segment in the x1 − x2 plane. So we have the problem that the
least core does not have only one imputation which we would be able to call
our solution. What is the fair allocation now? Here is what to do.

2.Calculate the next least core

The idea is, restricted to the allocations in the first least core, minimize
the maximum excesses over all the allocations in the least core.

If we take any allocation x ∈ C(ε1) we want to calculate the excesses for
each coalition:
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e(1, x) = −x1 e(2, x) = −x2

e(13, x) = x2 − 3/5 e(23, x) = x1 − 4/5
e(12, x) = −1/10 e(3, x) = −1/10

Since x ∈ C(ε1) we know that these are all ≤ −1/10. Observe that the excesses
e(12,x) = e(3,x) = −1/10 do not depend on the allocation x as long as it is
in C(ε1).

Now we set

Σ1 := {S ( N |e(S,x) < ε1, for some x ∈ C(ε1)}.

This is a set of coalitions with excesses for some imputation smaller than ε1.
So these coalitions can use some imputation which gives a better allocation
for them, as long as the allocations used are also in C(−1/10). In our example

Σ1 = {1, 2, 13, 23}

Now define

ϕ1(x) = max
S∈Σ1

e(S,x), and ε2 := min
x∈X

ϕ1(x) = min
x∈X

max
S∈Σ1

e(S,x)

and
X2 := {x ∈ X1 = C(ε1)|ϕ

1(x) = ε2}.

The set X2 is the subset of allocations from X1 which are preferred by the
coalitions in Σ1. If X2 contains exactly one imputation, then that point is
our fair allocation, i.e., the solution.

In our example we get, subject to x ∈ X1 so that x1 + x2 = 9/10, 2/5 ≤
x1 ≤ 7/10,

ϕ1(x) = max{e(1,x), e(2,x), e(13,x), e(23,x)}

= max{−x1,−x2, x2 − 3/5, x1 − 4/5}

= max{−x1, x1 − 9/10, x1 − 4/5, 3/10− x1}

Here is a plot of the function ϕ1(x).

0.0

−0.2

0.3

0.2

0.1

−0.1
x

1.00.750.50.250.0



70 4 Cooperative games

The minimum of this function is then ε2 = −1/4 and it is achieved
where the two lines cross, namely x1 = 11/20. Then, since x1 + x2 = 9/10
we must have x2 = 7/20 and, finally, x3 = 2/20. We have found X2 =
{(11/20, 7/20, 2/20)} containing exactly one point and so is our solution to
the problem.

Notice that for this allocation

e(13,x) = x2 − 3/5 = 7/20 − 12/20 = −1/4
e(23,x) = x1 − 4/5 = 11/20− 4/5 = −1/4
e(1,x) = −11/20, e(2, x) = −7/20

and each of these is smaller than −1/10 so these coalitions are happy with
this imputation in the sense that if they don’t use it, some other coalition will
be unhappy with the allocation.

In general, we would need to continue this procedure if X2 also contained
more than one point. Here are the sequence of steps to take until we get down
to one point:

Step 0.X0 := X, Σ0 := {S ( N, S 6= ∅}

Step k ≥ 1.:εk := min
x∈Xk−1 maxS∈Σk−1 e(S,x)

Xk := {x ∈ X |x ∈ Xk−1, εk = min
x∈Xk−1 maxS∈Σk−1 e(S, x) = maxS∈Σk−1 e(S,x)}

Σk = {S ∈ Σk−1|e(S, x) = εk, ∀ x ∈ Xk}

Σk := Σk−1 \ Σk

If Σk = ∅ STOP : ELSE k = k + 1 GO TO Step k

When this algorithm stops at, say k = m, then Xm is the nucleolus of
the core and will satisfy the relationships

Xm ⊂ Xm−1 ⊂ · · · ⊂ X1 ⊂ X0

Also, Σ0 ⊃ Σ1 ⊃ Σ2 · · ·Σm−1 ⊃ Σm.
The nucleolus is guaranteed to contain only one allocation x and this is

the solution of the game.
The procedure to find the nucleolus can be formulated as a sequence of

linear programs which can be solved using Maple. Here is the set up.
To begin, set k = 1. Then
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ε1 = min
x∈X0

max
S∈Σ0

e(S,x).

Set α = maxS∈Σ0 e(S,x). Then α ≥ e(S,x) = v(S) −
∑

i∈S xi, ∀S ∈ Σ0. We
see that

α +
∑

i∈S

xi ≥ v(S), ∀S ∈ Σ0.

So, our first linear programming problem which will yield e1, X
1, Σ1 is

Minimize α
subject to α +

∑

i∈S xi ≥ v(S), x ∈ X0 = X.

The minimum such α is ε1 and

Σ1 = {S ∈ Σ0|e(S,x) = ε1}.

The next linear programming problem can now be formulated. It is

Minimize α
subject to α +

∑

i∈S xi ≥ v(S), x ∈ X1, S ∈ Σ1 = Σ0 − Σ1.

The minimum such α is ε2 and

Σ2 = {S ∈ Σ1|e(S,x) = ε2}.

Continue until we end up with exactly one allocation.

Example 4.9. Let’s look at a game with 3 players. The characteristic function
is v(i) = 0, i = 1, 2, 3, v(12) = 1/3, v(13) = 1/6, v(23) = 5/6, v(123) = 1, and
this is in normalized form. We see that 1/3 + 1/6 + 5/6 < 2 and so the core
of the game C(0) is not empty. We need to find the allocation within the core
which solves our problem and that is done by finding the nucleolus.

1. First linear programming problem: We start with the full set of possible
coalitions excluding the grand coalition Σ0 = {1, 2, 3, 12, 13, 23}. In addition
with this characteristic function we get

e(1,x) = −x1, e(2, x) = −x2, e(3,x) = −x3

e(12,x) = 1/3 − x1 − x2, e(13,x) = 1/6 − x1 − x3

e(23,x) = 5/6 − x2 − x3

The first linear program is

Minimize α = ε1

subject to α +
∑

i∈S xi ≥ v(S), x ∈ X0 = X, S ∈ Σ0.

The constraints are explicitly

α + x1 ≥ 0, α + x2 ≥ 0, α + x3 ≥ 0
α + x1 + x2 ≥ 1/3, α + x1 + x3 ≥ 1/6, α + x2 + x3 ≥ 5/6
x1 + x2 + x3 = 1, xi ≥ 0, i = 1, 2, 3.

The Maple commands that give the solution are
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>with(simplex):

>obj:=a:

>cnsts:={a+x>=0,a+y>=0,a+z>=0,a+x+y>=1/3,a+x+z>=1/6,a+y+z>=5/6,

x+y+z=1,x>=0,y>=0,z>=0};

>minimize(a,cnsts);

Maple gives the solution ε1 = α = a = −1/12, x1 = x = 1/12, x2 = y =
4/12, x3 = z = 7/12. So this gives the allocation x = (1/12, 4/12, 7/12). But
this is not necessarily the unique allocation and therefore the solution to our
game. To see if there are more, substitute α = 1/12 in the constraint set to
see that

cnsts := {1/12 ≤ x, 1/12 ≤ y, 1/12 ≤ z, 5/12 ≤ x + y, 1/4 ≤ x + z,

11/12 ≤ y + z, x + y + z = 1, 0 ≤ x, 0 ≤ y, 0 ≤ z}. (4.1.1)

This substitution is easily performed with the Maple command

>subs(a=-12,cnsts);

Now, to see if there are other solutions we need to solve the system of
inequalities in cnsts. To do that we have to first convert all the equalities in
cnsts to inequalities. So we work with the modified constraints:

fcnsts := {0 <= x − 1/12, 0 ≤ y − 1/12, 0 ≤ z − 1/12, 5/12 ≤ x + y,

1/4 ≤ x + z, 11/12 ≤ y + z, x + y + z ≤ 1, 1 <= x + y + z}; (4.1.2)

So we want to solve the system fcnsts for x, y, z. Maple does that as
follows

>with(SolveTools:-Inequality):

>LinearMultivariateSystem(fcnsts,[x,y,z]);

Maple gives the following output

{[{1/12 <= x, x <= 1/12}, {5/12-x <= y, y <= 2/3+x},

{1-x-y <= z, z <= 1-x-y}]}

We see that x = x1 = 1/12 but there are more solutions for y = x2 and
z = x3. To find them we now substitute x = 1/12 in fcnsts and clean it up
to work with

hcnsts := {0 <= -1/12+y, 0 <= -1/12+z, 0 <= -11/12+y+z,

0 <= -1/3+y, y+z <= 11/12, 0 <=-1/6+z}

Then we use once again

LinearMultivariateSystem(hcnsts,[y,z]);

with output
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{[{y <= 3/4, 3/4 <= y}, {z <= 11/12-y, 1/6 <= z}],

[{1/3 <= y, y < 3/4}, {11/12-y <= z, z<= 11/12-y}]}.

It is the second set of solutions we want, namely 1/3 ≤ y < 3/4 and y + z =
11/12.

Summarizing the results of this procedure we have

ε1 = −1/12 and

X1 = C(ε1) = {x1 = 1/2, 4/12 ≤ x2 < 9/12, x3 ≤ 7/12, x2 + x3 = 11/12}.
(4.1.3)

The least core contains a line segment and we will need to proceed to the
second linear program.

2. From the first step we get

ε1 = −1/12 and

X1 = C(ε1) = {x1 = 1/2, 4/12 ≤ x2 < 9/12, x3 ≤ 7/12, x2 + x3 = 11/12}.
(4.1.4)

and

Σ1 = {S ∈ Σ0|e(S,x) = ε1} = {1, 23} and Σ1 = Σ0 − Σ1 = {2, 3, 12, 13}.

Our next LP problem can now be formulated:

Minimize α = ε2

subject to α +
∑

i∈S xi ≥ v(S), x ∈ X1, S ∈ Σ1.

The constraints are explicitly

α + x2 ≥ 0, α + x3 ≥ 0
α + x1 + x2 ≥ 1/3, α + x1 + x3 ≥ 1/6,
x2 + x3 = 11/12, x2 ≤ 9/12, x3 ≤ 7/12.

Using Maple we again obtain

ε2 = −7/24, X2 = {x1 = 1/12, x2 = 13/24, x3 = 9/24}

and
Σ2 = {12, 23}, Σ2 = Σ1 − Σ2 = {2, 3}.

This is very promising because X2 has only one point but since Σ2 6= ∅
we have to calculate again.

3. The third LP problem gives
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α = ε3 = −9/24, X3 = X2, Σ3 = {3}, and Σ3 = Σ2 − Σ3 = {2}.

So we do it again since Σ3 6= ∅ even though we are not changing the
allocation X3.

4. The fourth LP problem results in

α = ε4 = −13/24, X4 = X3 = X2, Σ4 = {2}, and Σ4 = Σ3 − Σ4 = ∅.

So we are finally done and we conclude that

Nucleolus = X4 = {(1/12, 13/24, 9/24)}.

4.2 The Shapley Value

In an entirely different approach to deciding a fair allocation we change the
definition of fair from minimizing the maximum dissatisfaction to allocating
an amount proportional to the benefit each coalition derives from having a
specific player as a member. The fair allocation would be the one recognizing
the amount each member adds to a coalition. Players who add nothing, should
receive nothing and players who are indispensable should be allocated a lot.
The question is how do we figure out how much benefit each player adds to a
coalition. Shapley came up with a way.

Definition 4.2.1 An allocation x = (x1, . . . , xn) is called the Shapley value
if

xi =
∑

{S∈Πi}

[v(S) − v(S − i)]
(|S| − 1)!(|N | − |S|)!

|N |!
, i = 1, 2, . . . , n,

where Πi is the set of all coalitions S ⊂ N so that i ∈ S.

To see where this definition comes from fix a player, say i, and consider the
random variable Zi which takes its values in the set of all possible coalitions
P(N). Zi is the coalition in which i is the jth player to join the grand coalition
and n − j players join after player i. We assume that Zi has the probability
distribution

P (Zi = S) =
(|S| − 1)!(n − |S|)!

n!

We choose this distribution because |S|−1 players have joined before player i,
and this can happen in (|S| − 1)! ways; and n− |S| players join after player i,
and this can happen in (n− |S|)! ways. The denominator is the total number
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of coalitions that can form among n players. This distribution assumes that
they are all equally likely. One could debate this choice of distribution but
this one certainly seems reasonable.

Therefore, for the fixed player i, if we compute

xi ≡ E[v(Zi) − v(Zi − i)] =
∑

{S∈Πi}

[v(S) − v(S − i)]P (Zi = S)

=
∑

{S∈Πi}

[v(S) − v(S − i)]
(|S| − 1)!(n − |S|)!

n!

this is the expected benefit player i brings to the grand coalition. The Shapley
value (or vector) is then the allocation x = (x1, . . . , xn).

Example 4.10. 2 players have to divide $M and they each get zero if they can’t
agree. What is the fair allocation? Obviously, without regard to the benefit
derived from the money the allocation should be M/2 to each player. Define
v(1) = v(2) = 0, v(12) = M. Then

x1 = [v(1) − v(∅)]
0!

1!
2! + [v(12) − v(2)]

1!0!

2!
=

M

2
.

Note that if we solve this problem using the least core approach we get

C+(ε) = {(x1, x2)|e(S, x) ≤ ε, ∀S ( N}

= {(x1, x2)| − x1 ≤ ε,−x2 ≤ ε, M − x1 − x2 ≤ ε}

= {(x1, x2)|x1 = x2 = M/2}

Example 4.11. Let’s go back to the sink allocation problem with Amy, Agnes,
and Agatha. Using the core concept we obtained

Player Truck Capacity Allocation
Amy 45 35
Agnes 60 50
Agatha 75 65

Total 180 150

Let’s see what we get for the Shapley value. Recall that the characteristic
function was v(i) = 0, v(13) = 120, v(12) = 105, v(23) = 135, v(123) = 150. In
this case n = 3, n! = 6 and for player i = 1, Π1 = {1, 12, 13, 123}, so
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x1 =
∑

{S∈Π1}

[v(S) − v(S − 1)]
(|S| − 1)!(3 − |S|)!

6

= [v(1) − v(∅)]P (Z1 = 1) + [v(12) − v(2)]P (Z1 = 12)

+[v(13) − v(3)]P (Z1 = 13) + [v(123) − v(23)]P (Z1 = 123)

= 0 + 105
1!

1!6
+ 120

1

6
+ [150 − 135]

2

6
= 42.5

Similarly

x2 =
∑

{S∈Π2}

[v(S) − v(S − 2)]
(|S| − 1)!(3 − |S|)!

6

= [v(2) − v(∅)]P (Z1 = 2) + [v(12) − v(1)]P (Z1 = 12)

+[v(23) − v(3)]P (Z1 = 23) + [v(123) − v(13)]P (Z1 = 123)

= 0 + 105
1!

1!6
+ 135

1

6
+ [150 − 135]

2

6
= 50

x3 =
∑

{S∈Π3}

[v(S) − v(S − 3)]
(|S| − 1)!(3 − |S|)!

6

= [v(3) − v(∅)]P (Z3 = 3) + [v(13) − v(1)]P (Z3 = 13)

+[v(23) − v(2)]P (Z3 = 23) + [v(123) − v(12)]P (Z3 = 123)

= 0 + 120
1!

1!6
+ 135

1

6
+ [150 − 105]

2

6
= 57.5

Consequently, the Shapley vector is x = (42.5, 50, 57.5), or, since we can’t
split sinks x = (43, 5057), quite a different allocation from the nucleolus solu-
tion.

Example 4.12. A typical and interesting problem involves a debtor who owes
money to more than one creditor. The problem is that the debtor does not
have enough money to pay off all the creditors so he must negotiate the amount
each creditor will receive of the money that he has to pay back. To be specific,
suppose that debtor D has exactly $ 100,000 to pay off 3 creditors A, B, C. D
owes A $50,000; D owes B $65,000, and D owes C $10,000. Now it is possible
for D to split up the 100K on the basis of percentages, i.e., the total owed is
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$ 145,000 and the amount to A is about 35% of that, to B is about 45%, and
to C about 20%. We want to know what the Shapley allocation would be.

Let’s take the characteristic function as follows: The 3 players are A, B, C
and (with amounts in thousands of dollars)

v(A) = 25, v(B) = 40, v(C) = 0, (4.2.1)

v(AB) = 90, v(AC) = 35, v(BC) = 50, v(ABC) = 100. (4.2.2)

For example, if we consider the coalition AC they look at the fact that in the
worst case B gets paid his 65K and they have 35K left as the value of their
coalition. This is a little pessimistic since it is also possible to consider that
AC would be paid 75K and then v(AC) = 75. That is, other characteristic
functions are possible.

Now we compute the Shapley values.

xA = [v(A) − v(∅)]
1

3
+ [v(AB) − v(B)]

1

6
+ [v(AC) − v(C)]

1

6
+ [v(ABC) − v(BC)]

1

3
= 25/3 + 50/6 + 35/6 + 50/3 = 235/6 = 39.17K

xB = [v(B) − v(∅)]
1

3
+ [v(AB) − v(A)]

1

6
+ [v(BC) − v(C)]

1

6
+ [v(ABC) − v(AC)]

1

3

= 40
1

3
+ 65

1

6
+ 50

1

6
+ 65

1

3
= 325/6 = 54.17K

xC = [v(C) − v(∅)]
1

3
+ [v(BC) − v(B)]

1

6
+ [v(AC) − v(A)]

1

6
+ [v(ABC) − v(AB)]

1

3

= 0
1

3
+ 10

1

6
+ 10

1

6
+ 10

1

3
= 40/6 = 6.67K

The Shapley allocation is x = (39.17, 54.17, 6.67) compared to the allo-
cation by percentages of (35, 45, 20). Players A, B will receive more at the
expense of C who is owed the least.

Shapley vectors can also quickly analyze the winning coalitions in games
where that is all we care about: who do we team up with to win. Here are the
definitions.

Definition 4.2.2 Suppose we are given a normalized characteristic function
v(S) which satisfies that for every S ⊂ N, either v(S) = 0 or v(S) = 1. This
is called a simple game. If v(S) = 1, the coalition S is said to be a winning
coalition. Let W i = {S ∈ Πi|v(S) = 1, v(S− i) = 0}, the set of coalitions who
win with player i and lose without player i.
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In the case of a simple game for player i we need only consider coalitions
S ∈ Πi for which S is a winning coalition, but S − i, that is, S without i
is a losing coalition. This is because v(S) − v(S − i) = 1 only when v(S) =
1, and v(S− i) = 0. In all other cases v(S)−v(S− i) = 0. Hence, the Shapley
value for a simple game is

xi =
∑

{S∈Πi}

[v(S) − v(S − i)]
(|S| − 1)!(n − |S|)!

n!

=
∑

{S∈W i}

(|S| − 1)!(n − |S|)!

n!

The Shapley allocation for player i represents the power that player holds in
a coalition.

Example 4.13. A corporation has 4 stockholders who each vote their shares on
any major decision. The majority of shares voted decides an issue. A majority
consists of more than 50 shares. Suppose the holdings of each stockholder are
as follows:

Player 1 2 3 4
Shares 10 20 30 40

The winning coalitions, i.e., with v(S) = 1 are

W = {24, 34, 123, 124, 234, 1234}

We find the Shapley allocation. For x1, W 1 = {123} because S = {123} is
winning but S − 1 = {23} is losing. Hence,

x1 =
(4 − 3)!(3 − 1)!

4!
=

1

12
.

Similarly, W 2 = {24, 123, 234} and so

x2 =
1

12
+

1

12
+

1

12
=

1

4
.

Also, x3 = 1/4 and x4 = 5/12. Hence the Shapley allocation is x =
(1/12, 3/12, 3/12, 5/12). Notice that player 1 has the least power, but players 2
and 3 have the same power even though player 3 controls 10 more shares than
does player 2. Player 5 has the most power but a coalition is still necessary
to constitute a majority.

Continuing this example but changing the shares to

Player 1 2 3 4
Shares 10 30 30 40
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We compute the Shapley value as x1 = 0, x2 = x3 = x4 = 1/3 and we see
that player 1 is completely marginalized as he doesn’t contribute anything to
any coalition. He has no power. In addition, player 4’s additional shares over
players 2 and 3 provide no advantage over those players since a coalition is
essential to carry a majority in any case.

Example 4.14. In this example we show how cooperative game theory can
determine a fair allocation of taxes to a community. For simplicity assume that
there are only 4 households and that the community requires expenditures of$
10,000. The question is how to allocate the cost of the $ 10,000 among the 4
families. So, as in most communities we consider the wealth of the family as
represented by the value of their property. Suppose the wealth of household i
is wi, with specific values w1 = 50K, w2 = 75K, w3 = 100K, w4 = 200K. In
addition, suppose that there is a cap on the amount each household will have
to pay (based on age or income or some other extraneous factors) which is
independent of the value of their property. In our case we take the maximum
amount each of the 4 households will be willing to pay as u1 = 5K, u2 =
4K, u3 = 6K, u4 = 8K. What should each family fairly have to pay?

Let us consider the general problem:

T total cost
ui maximum amount i will have to pay
wi net worth of player i
zi amount player i will have to pay
ui − zi surplus of the cap over the assessment

We will assume that

n
∑

i=1

wi > T,
n
∑

i=1

ui > T, and
n
∑

i=1

zi = T.

Here is the characteristic function we will use:

v(S) =



















(

∑

i∈S

ui − T

)+

, if
∑

i∈S

wi ≥ T ;

0, if
∑

i∈S

wi < T .

In other words, if the total wealth in coalition S is less than the total cost, or if
the sum of the caps over the coalition S is less than T, then the benefit of that
coalition is 0. Otherwise, the benefit of a coalition is the surplus over the cost
of the total sum of the caps of the coalition. Under our previous assumption
we can simplify to

v(S) =
∑

i∈S

ui − T.
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Next we compute for a given coalition S and j ∈ S, assuming that v(S) >
0 and v(S − j) > 0,

v(S) − v(S − j) =
∑

i∈S

ui − T −





∑

i∈S,i6=j

ui − T



 = uj.

Assuming v(S) > 0, v(S − j) = 0,

v(S) − v(S − j) =
∑

i∈S

ui − T.

Summarizing we have

v(S) − v(S − j) =







uj, if v(S) > 0, v(S − j) > 0;
∑

i∈S ui − T, if v(S) > 0, v(S − j) = 0;
0, if v(S) = v(S − j) = 0.

We are ready to compute the Shapley allocation. We have, for player j =
1, . . . , n,

xj =
∑

{S|j∈S,v(S−j)>0}

uj

|S|!(n − |S|)!

n!

+
∑

{S|j∈S,v(S)>0,v(S−j)=0}

(

∑

k∈S

uk − T

)

|S|!(n − |S|)!

n!
(4.2.3)

Observe that xj represents the amount of the surplus of the amount j is willing
to pay to be allocated to player j. Consequently, the amount player j will be
billed is actually zj = uj − xj .

For the 4 person problem data above we have T = $10, 000,
∑

wi = 425 >
10,
∑

i ui = 23 > 10. so all our assumptions are verified. Then we have

v(i) = 0, v(12) = v(23) = 0, v(13) = 1000, v(14) = 3000,
v(24) = 2000, v(34) = 4000,
v(123) = 5000, v(134) = 9000, v(234) = 8000,
v(124) = 7000, v(1234) = 13000.

For example v(123) = (u1 + u2 + u3 − 10)+ = 15 − 10 = 5. We compute

x1 =
1!

2!
4! [(v(13) − v(3)) + (v(14) − v(4))] +

2!1!

4!
[v(123) − v(23)]

+
2!1!

4!
[v(134) − v(34) + v(124) − v(24)]

+
3!0!

4!
[v(1234)− v(234)]

=
34000

12
.



4.3 Bargaining 81

Then, the amount player 1 will be billed is z1 = u1 − x1 = 5000 − 34000
12 =

2166.67. In a similar way we calculate

x2 = 2166.67 x3 = 3333.33, and x4 = 4666.67

so that

z2 = 4000 − 2166.67 = 1833.33, z3 = 6000 − 3333.33 = 2666.67,
and z4 = 8000− 4666.67 = 3333.33.

4.3 Bargaining

In this section we will introduce a new type of cooperative game in which the
players bargain to improve both of their payoffs. Let us start with a simple
example to illustrate the benefits of bargaining and cooperation. Consider the
2 player nonzero sum game with bimatrix

II1 II2 II3

I1 (1, 4) (−2, 1) (1, 2)
I2 (0,−2) (3, 1) (1, 1)

We will draw the points of this game on a graph and connect the payoffs with
straight lines.

4

0

0

−4

Player II

Player I

4

2

2

−2

−2−4

Possible Payoffs if Players Cooperate

The vertices of the polygon are the payoffs from the matrix. The solid lines
connect the payoffs. If the players play mixed strategies then any payoff in
the region bounded by the solid lines are achievable. The dotted lines extend
the region of achievable payoffs. Now, if the players do not cooperate, they
will achieve one of two possibilities. (1) The vertices of the figure, if they play
pure strategies, or (2) Any point along the solid lines in the figure, if they
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play mixed strategies. However, if the players agree to cooperate, then any
point on the boundary of the extended figure, including the dotted lines, are
achievable payoffs.

For example, suppose that player I always chooses row 2, I2 and player II
plays the mixed strategy Y = (y1, y2, y3), where yi ≥ 0, y1 + y2 + y3 = 1. The
expected payoff to I is then

EI(I2, Y ) = 0 y1 + 3y2 + 1 y3,

and the expected payoff to II is

EII(I2, Y ) = −2y1 + 1y2 + 1y3.

Hence,

(EI , EII) = y1(0,−2) + y2(3, 1) + y3(1, 1) = (1, 1) + y1(−1,−3) + y2(2, 0),

which, as a linear combination of the 3 points is in the convex hull of the 3
points. The convex hull of a set of points is the smallest convex set containing
all the points. So any point in the convex hull of the payoff points is achievable
if the players agree to cooperate. This defines the feasible set:

Definition 4.3.1 The feasible set is the set of the convex hull of all the
payoff points corresponding to pure strategies of the players.

The objective of Player I is to obtain a payoff as far to the right as possible
in the figure and the objective of player II is to obtain a payoff as far to the
north as possible in the figure. Player I’s ideal payoff is at the point (3, 1),
but that is attainable only if II agrees to play II2. Why would he do that?
Similarly, II would do best at (1, 4), which is only going to happen if I plays
I1, and why would he do that? So, there is an incentive for the players to
reach a compromise agreement in which they would agree to play in such a
way so as to obtain a payoff along the line connecting (1, 4) and (3, 1).

In any bargaining problem there is always the possibility that negotiations
will fail. Hence, each player must know what their payoff will be if there was
no bargaining.

Definition 4.3.2 The status quo payoff point, or safety point, in a 2 person
game is the pair of payoffs (u∗, v∗) which each player can achieve if there is
no cooperation.

Example 4.15. In the example above we will determine the status quo point
for each player.

Consider the payoff matrix for player I:

A =

(

1 −2 1
0 3 1

)
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We want the value of the game with matrix A. By the methods of chapter
one we find that v(A) = 1/2 and the optimal strategies are Y = (0, 1/6, 5/6)
for player II and X = (1/2, 1/2) for player I.

Next we consider the payoff matrix for player II. We call this matrix B
but since we want to find the value of the game from player II’s point of view
we actually need to work with BT since it is always the row player who is the
maximizer (and II is trying to maximize his payoff). So,

BT =





4 −2
1 1
2 1



 .

For this matrix v(BT ) = 1 and we have a saddle point at row 3 column 2.
We conclude that the status quo point for this game is (I, II) = (1/2, 1)

since that is the guaranteed payoff to each player without cooperation or
negotiation. This means that any bargaining must begin with the guaranteed
payoff pair (1/2, 1). This cuts off the feasible set as in the figure.

safety point

Player II

Player I

4

0

0

−4

4

2

2

−2

−2−4

Possible Payoffs if Players Cooperate

The new feasible set consists of the points above and to the right of the blue
lines emanating from the safety point. It is like moving the origin to the new
safety point. The question now is to find the cooperative, negotiated best
payoff for each player.

How does cooperation help? Well, suppose, for example, the players agree
as follows: I will play I1 1/2 the time and I2 1/2 the time as long as II plays
II1 1/2 the time and II2 1/2 the time. This is not optimal for player II in
terms of his safety level. But, if they agree to play this way, they will get

1

2
(1, 4) +

1

2
(3, 1) = (2, 5/2).

So I gets 2 > 1/2 and II gets 5/2 > 1, a big improvement for each player
over their safety levels. So, they definitely have an incentive to cooperate.
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Example 4.16. Here is another example. The bimatrix is

II1 II2

I1 (5, 20) (−7,−19)
I2 (−16,−4) (20, 5)

The reader can calculate the safety level (I, II) = (−1/4,−1/2), so nego-
tiations start from that point. The figure has the picture for this problem.

20

10

10

0
Safety Point (−1/4,−1/2)

20

15

15

5

50

Payoffs and Security Point

It appears that a negotiated set of payoffs will benefit both players and will
be on the line farthest to the right. Player I would love to get (20, 5) while
player II would love to get (5, 20). That probably won’t happen but they could
negotiate a point along the line connecting these two points and compromise
on obtaining, say the midpoint

1

2
(5, 20) +

1

2
(20, 5) = (12.5, 12.5).

Now suppose that player II threatens player I by saying that he will
always play strategy II1 unless I cooperates. II ′s goal is to get the 20 if and
when I plays I1, so I would receive 5. Of course I does not have to play I1

but if he doesn’t, then I will get −16, and II will get −4. So, if I does not
cooperate and II carries out his threat they will both lose but I will lose much
more than II. Therefore, II is in a much stronger position than I in this game
and he can essentially force I to cooperate. This implies that the safety level
of (−1/4,−1/2) loses it’s effect here because II has a credible threat he can
use to force I to cooperate. This also seems to imply that maybe II should
expect to get more than 12.5 to reflect his stronger bargaining position from
the start.

The preceding example indicates that there may be a more realistic choice
for a safety level than the values of the associated games, taking into account
various threat possibilities. We will see that this is indeed the case.
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4.3.1 The Nash model with security point

We start with a security status quo point (u∗, v∗) for a 2 player cooperative
game with matrices A, B. This leads to a feasible set of possible negotiated
outcomes depending on the point we start from (u∗, v∗). For any given such
point and feasible set S, we are looking for a negotiated outcome, call it (u, v).
This point will depend on (u∗, v∗) and the set S, so we may write

(u, v) = f(S, u∗, v∗).

The question is how to determine the point (u, v)? John Nash proposed the
following requirements for the point to be a negotiated solution:

• Axiom 1. We must have u ≥ u∗ and v ≥ v∗. Each player must get at least
the security point.

• Axiom 2. The point (u, v) ∈ S, i.e., it must be a feasible point.
• Axiom 3. If (u, v) is any point in S, so that u ≥ u and v ≥ v, then it must

be the case that u = u, v = v. In other words, there is not other point in
S, where both players receive more. This is Pareto optimality.

• Axiom 4. If (u, v) ∈ T ⊂ S and (u, v) is the solution to the bargaining
problem with feasible set T, then for the larger feasible set S, either (u, v)
is the bargaining solution for S, or the actual bargaining solution for S is
in S − T. We are assuming that the security point is the same for T and
S. So, if we have more alternatives, the new negotiated position can’t be
one of the old possibilities.

• If T is an affine transformation of S, T = ϕ(S) and (u, v) is the bargaining
solution of S with security point (u∗, v∗), then ϕ(u, v) is the bargaining
solution associated with T and security point ϕ(u∗, v∗).

• Axiom 6. If the game is symmetric with respect to the players, then so is
the bargaining solution. That is, if (u, v) = f(S, u∗, v∗) and (i) u∗ = v∗,
(ii) (u, v) ∈ S ⇒ (v, u) ∈ S, then u = v.

The amazing thing is that Nash proved that if we assume these axioms,
there is one and only one solution of the bargaining problem. In addition, the
theorem gives a constructive way of finding the bargaining solution.

Theorem 4.3.3 Consider the nonlinear programming problem

Maximize g(u, v) := (u − u∗)(v − v∗)

Subject to (u, v) ∈ S, u ≥ u∗, v ≥ v∗.

Assume there is at least one point (u, v) ∈ S with u > u∗, v > v∗. There exists
one and only one point (u, v) ∈ S which solves this problem and this point is
the unique solution of the bargaining problem (u, v) = f(S, u∗, v∗).

Proof. 1. Existence. The set

S∗ = {(u, v) ∈ S|u ≥ u∗, v ≥ v∗},
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is convex, closed, and bounded. Since g : S∗ → R is continuous, a theorem
of analysis (any continuous function on a closed and bounded set achieves a
maximum and a minimum on the set) guarantees that g has a maximum at
some point (u, v) ∈ S∗. By assumption there is at least one feasible point with
u > u∗, v > v∗. For this point g(u, v) > 0 and so the maximum of g over S∗

must be > 0 and so does not occur at u = u∗ or v = v∗.
2. Uniqueness. Suppose the maximum 0 < M = g(u′, v′) = g(u′′, v′′).

If u′ = u′′ then (u′ − u∗)(v′ − v∗) = (u′′ − u∗)(v′′ − v∗) so that v′ = v′′

as well. So we may assume that u′ < u′′ and that implies v′ > v′′ because
(u′ − u∗)(v′ − v∗) = (u′′ − u∗)(v′′ − v∗) = M.

Set (u, v) = 1
2 (u′, v′) + 1

2 (u′′, v′′). Since S is convex, (u, v) ∈ S and u >
u∗, v > v∗. So (u, v) ∈ S∗. Some simple algebra shows that

g(u, v) = M +
(u′ − u′′)(v′′ − v′)

4
> M.

This contradicts the fact that (u′, v′) provides a maximum for g over S∗.
3. Consider the straight line passing through (u, v) and the security point

(u∗, v∗). It has equation

v = m u + (v − m u)

where m = v−v∗

u−u∗
u is the slope. Now consider the new line with slope −m and

passing through the point (u, v). This line has equation

v − v = −m(u − u). (4.3.1)

We claim that every point in (u, v) ∈ S lies on or below the line and so the
line is a support line for the convex set S. We verify this claim later.

4. It is not hard to show that the unique point (u, v) := f(S, u∗, v∗) max-
imizing g over S∗ satisfies the axioms and we leave that for the reader as an
exercise. We will show it is the unique solution which satisfies them.

Set h(u, v) = (v − v∗)u + (u − u∗)v and the closed half plane

H := {(u, v)|h(u, v) ≤ h(u, v)}

We know that S ⊂ H since the line is a support line. Consider the linear
transformation ϕ : (u, v) ∈ H → (u′, v′) ∈ H ′ given by

u′ =
u − u∗

u − u∗
, v′ =

v − v∗

v − v∗
.

One can check that H ′ = {(u′, v′)|u′ + v′ ≤ 2}. Notice that

ϕ(u∗, v∗) = (0, 0) and ϕ(u, v) = (1, 1).

Now we look at the symmetric bargaining problem with S = H ′ and security
point (0, 0). Let (u′, v′) = f(H ′, 0, 0) be the solution. By symmetry u′ = v′ so
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u′ + v′ = 2 ⇒ u′ = v′ = 1and since (1, 1) is a solution, by Pareto optimality it
follows that (1, 1) is the one and only solution so (1, 1) = f(H ′, 0, 0). Now we
apply the inverse of the transformation ϕ to conclude that (u, v) = ϕ−1(1, 1)
is the unique solution of (H, u∗, v∗). Since (u, v) ∈ S ⊂ H it must be true that
(u, v) is the unique solution of (S, u∗, v∗). ⊓⊔

Example 4.17. For the problem with security point (u∗, v∗) = (−1/4,−1/2)
we have the nonlinear programming problem

Maximize (u + 1/4)(v − 1/2)

Subject to u ≥ −1/4, v ≥ 1/2, v ≤ −u + 25,

v ≥ 24/27u− 12.77778, v ≤ 24/21 + 14.2857

The maple commands to solve this are:

> with(Optimization):

> NLPSolve(u+1/4)*(v-1/2),{u>=-1/4,v>=1/2,v<=-u+25,

v>=24/27*u-12.777778,v<=24/21*u+14.2857},maximize);

This gives the solution g(u, v) = 153.14, u = 12.125, v = 12.875. We do NOT
get the point we thought, namely (12.5, 12.5). That is due to the fact that the
security point is not symmetric.

4.3.2 Threats

Negotiations of the type considered in the previous section do not take into
account the relative strength of the positions of the players in the negotiations.
For instance, a simplified version of strike negotiations might go as follows.

Labor may work for minimum subsistence level wages and no benefits or
choose to strike. Management may choose the strategy of not acceding to
labors demands and watching labor strike, or deciding to pay a decent wage
with decent benefits. This could be a reasonable representation of the payoffs:
The bimatrix with I =labor and II =management is

II1(Pay) II2(Stand)
I1(Work) (10, 5) (1, 20)
I2(Strike) (15, 15) (−100,−4)

Player I’s payoff matrix is

A =

(

10 1
15 −100

)

and for II

B =

(

5 20
−4 0

)

so we look at BT =

(

5 −4
20 0

)
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It is left to the reader to verify that value(A) = 1, value(BT ) = 0 so the
security point is (u∗, v∗) = (1, 0).

In a threat game we replace the security levels (u∗, v∗), which in the pre-
ceding sections was the value of the associated games u∗ = value(A), v∗ =
value(BT ), with the expected payoffs to each player if the threat strategies
are used.

Suppose that in the bimatrix game player I has a threat strategy Xt and
player II has a threat strategy Yt. The new status quo point will be the
expected payoffs to the players if they both use their threat strategies:

u∗ = Xt
T AYt, and v∗ = Xt

T BT Yt.

Then we return to the cooperative game and apply the same procedure as
before but with the new threat security point. That is, we seek to

Maximize g(u, v) := (u − Xt
T AYt)(v − Xt

T BT Yt)

Subject to (u, v) ∈ S, u ≥ Xt
T AYt, v ≥ Xt

T BT Yt.

The question is how to pick the threat strategies? For the time being we put
that question aside and assume we have a security point (u∗, v∗). We look at
the example to see how to solve this problem.

Example 4.18. Start with the bimatrix

II1 II2

I1 (−3, 0) (−1,−2)
I2 (2, 1) (1, 3)

To begin we find the values of the associated matrices

A =

(

−3 −1
2 1

)

, and BT =

(

0 1
−2 3

)

Then, value(A) = 1 with a saddle at X = (0, 1), Y = (0, 1) and value(BT ) = 0
with a saddle at X = (1, 0) = Y. Hence the security point is (u∗, v∗) = (1, 0).
The feasible set taking into account the security point is

S∗ = {(u, v)|u ≥ 1, v ≥ 0, v ≤ −2u + 5, v ≥ u − 1, v ≥ −u − 3, v ≤
3

4
u +

9

4
}

The nonlinear programming problem is then

Maximize g(u, v) := (u − 1)v

Subject to (u, v) ∈ S∗.
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We get the solution u = 1.75, v = 1.5. This is on the line v = −2u+5, and
this line is the Pareto optimal boundary for this problem. In the figure, notice
that if you take any point on this line, both players cannot do strictly better
at the same time and still stay in S∗. The line through (1.75, 1.5) and (1, 0)
has slope 1.5/.75 = 2 and the line of the Pareto optimal boundary is −2.
The function g has increasing contour curves which will look like hyperbolas
moving to the right and upward and the last contour curve which touches S∗

must touch at the Pareto optimal boundary at u, v.
The conclusion is that with this security point, I receives the negotiated

solution u = 1.75 and II the amount v = 1.5.
How should they cooperate in order to achieve these solutions? To find

out, the only points in the bimatrix which are of interest are the endpoints
of the Pareto optimal boundary, namely, (1, 3) and (2, 1). So the cooperation
must be a linear combination of the strategies yielding these payoffs. Solve

(1.75, 1.5) = λ(1, 3) + (1 − λ)(2, 1),

to get λ = 1/4. This says that (I, II) must play (row2, col2) with probability
1/4 and (row2, col1) with probability 3/4.

Threat security point:

The Pareto optimal boundary for this problem is the line segment v =
−2u + 5, 1 ≤ u ≤ 2. This line has slope m = −2. Consider a line with slope
−m = 2 through any possible threat security point (u∗, v∗) then the line will
intersect the Pareto optimal boundary line at the possible negotiated solution
(u, v). The equation of the line through (u∗, v∗), whatever the point is, with
slope −m has equation

v − v∗ = −m(u − u∗).

The equation of the Pareto optimal boundary line is v = −2u + 5 so the
intersection point of the two lines will be at the coordinates
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u = m u∗+v∗−5
m−2 = −2u∗+v∗−5

−4 , and

v = 5∗m−2(m u∗+v∗)
m−2 = −10−2(−2u∗+v∗)

−4 .

Now, remember, we are trying to find the best threat strategies to use
but fundamentally, the players want to maximize their payoffs u, v. But that
tells us exactly what to do for the threats. Player I will maximize u if he
chooses threat strategies to maximize m u∗ + v∗ = −2 ∗ u∗ + v∗ and player II
will maximize v if he chooses threat strategies to minimize the same quantity
m u∗ + v∗ because there is a minus sign in front of this quantity for v. So here
is the procedure for finding u∗, v∗ and the optimal threat strategies:

1. Identify the Pareto optimal boundary and find the slope of that line, call
it m.

2. Construct the new matrix for a zero sum game

−m ∗ u∗ − v∗ = −m(XtAY T
t − XtBY T

t ) = Xt(−mA − B)Y T
t

with matrix −mA − B.
3. Find the optimal strategies Xt, Yt for that game and compute u∗ =

XtAY T
t and v∗ = XtBY T

t . This (u∗, v∗) is the threat status quo point
to be used to solve the bargaining problem.

4. Once we know (u∗, v∗) we may use the formulas above for (u, v).

Carrying out these steps for our example, we find

2A − B =

(

−6 0
3 −1

)

We find value(2A−B) = −60 and optimal threat strategies Xt = (.4, .6), Yt =
(.1, .9). Then u∗ = XtAY T

t = .18, and v∗ = XtBY T
t = .96. Once we know

that we can use the formulas above to get

u = −2(.18)+.96−5
−4 = .11, and

v = −10−2(−2(.18)+.96)
−4 = .28

The example gives us a general procedure to solve for the threat strategies.
Notice however that several things can make this procedure more complicated.
First, the determination of the Pareto optimal boundary of S is of critical im-
portance. In the example it consisted of only one line segment, but in practice
there may be many such line segments and we have to work separately with
each segment. That is because we need the slopes of the segments. This means
that the threat strategies and the threat point u∗, v∗ could change from seg-
ment to segment. An example will illustrate this.

Another problem is that the Pareto optimal boundary could be a point of
intersection of two segments so there is no slope for the point. Then what do
we do?
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g is maximized at an intersection point

contours of g

Summary approach for Bargaining with Threat Strategies.

1. Identify the Pareto optimal boundary of S and find the slope of that line,
call it m < 0. Suppose the end point (uB, vB) is on the line.

2. Construct the new matrix for a zero sum game −mA − B associated by

−m ∗ u∗ − v∗ = −m(XtAY T
t − XtBY T

t ) = Xt(−mA − B)Y T
t .

3. Find the optimal strategies Xt, Yt for that game with matrix −mA − B
and then compute u∗ = XtAY T

t and v∗ = XtBY T
t . This (u∗, v∗) is the

threat status quo point to be used to solve the bargaining problem.
4. Once we know (u∗, v∗) we may use the formulas for (u, v) which is the

point of intersection of the line through (u∗, v∗) with slope −m and the
line through (uB, vB) with slope m on the Pareto optimal boundary. This
formula is

u =
vB − v∗ − m(uB + u∗)

−2m
, and v =

vb + v∗ − m(uB − u∗)

2
.

Alternatively we may simply solve the nonlinear programming problem
using Maple.

Example 4.19. Consider the bimatrix game

II1 II2 II3

I1 (1,4) (-2,0) (4,1)
I2 (0,-1) (3,3) (-1,4)

1. We find the security status quo point first. The matrices for the players
are

A =

(

1 −2 4
0 3 −1

)

and B =

(

4 0 1
−1 3 4

)
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Then, value(A) = 1/2, value(BT ) = 3/2 so the status quo security level is
(u∗, v∗) = (1/2, 3/2).

The set of constraints with this security level is

S∗ := {(u, v)|u ≥ 1/2, v ≥ 3/2, v ≤ 4, v − 4 ≤ (−1/2)(u − 1),

v − 3 ≤ (−2)(u − 3), v − 1 ≥ (2/4)(u − 4), v + 1 ≥ (−2)u}

Applying the nonlinear programming method to the objective function g(u, v) =
(u−1/2)(v−3/2) subject to the constraints (u, v) ∈ S∗, we get that the max-
imum of g is achieved at (u, v) = (3, 3) and the maximum is g(u, v) = 3.75.
One can see from the figure that the contours of g just touch at the point
(3, 3) before they leave the set S∗.
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2. Now we look for optimal threat strategies.

Example 4.20. Consider the cooperative game with bimatrix

II1 II2

I1 (-1,1) (1,1)
I2 (2,-2) (-2,2)

So the individual matrices are

A =

(

−1 1
2 −2

)

and B =

(

−1 1
−2 2

)

It is easy to calculate that value(A) = 0, value(BT ) = 1 and so the status
quo security point for this game is at (u∗, v∗) = (0, 1). The problem we then
need to solve is
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Maximize u(v − 1), Subject to (u, v) ∈ S∗,

where

S∗ = {(u, v)|v ≤ (−1/3)u + 4/3, v ≤ −3u + 4, u ≥ 0, v ≥ 1}

The solution of this problem is at the unique point (u, v) = (1/2, 7/6).
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Next, to find the threat strategies we note that m = −3 so we look for the
value of the game with matrix 3A − B. This is

3A − B =

(

−2 2
8 −8

)

Then value(3A − B) = 0, and the optimal threat strategies are Xt =
(1/2, 1/2) = Yt. Then the status quo threat points are

u∗ = XtAYt
T = 0 and v∗ = XtBYt

T = 0.

This means that each player threatens to use (Xt, Yt) and receive 0 rather
than cooperate and receive more.

Now the maximization problem becomes

Maximize uv, Subject to (u, v) ∈ S∗,

where

S∗ = {(u, v)|v ≤ (−1/3)u + 4/3, v ≤ −3u + 4, u ≥ 0, v ≥ 0}

The solution of this problem is at the unique point (u, v) = (1, 1).
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