Demazure crystals, Kirillov-Reshetikhin crystals, and the energy function ${ }^{1}$

Peter Tingley
(joint with Anne Schilling)

Massachusetts Institute of Technology

Wake forest, Sept. 24, 2011

[^0]
Outline

(1) Background

- Highest weight crystals
- Demazure crystals
- Kirillov-Reshetikhin crystals
- Relationship between KR crystals and Demazure crsystals.
- The energy function
(2) Results
(3) Applications
- Macdonald polynomials
- Whittaker functions
(4) Future directions
- Macdonald polynomials from Demazure characters in type $C_{n}^{(1)}$?

The adjoint crystal for $\mathfrak{s l}_{3}$

The adjoint crystal for $\mathfrak{s l}_{3}$

- There are 6 one dimensional weight spaces and one two-dimensional weight space.

The adjoint crystal for $\mathfrak{s l}_{3}$

- There are 6 one dimensional weight spaces and one two-dimensional weight space.

The adjoint crystal for $\mathfrak{s l}_{3}$

- There are 6 one dimensional weight spaces and one two-dimensional weight space.
- The generators F_{1} and F_{2} act between weight spaces.

The adjoint crystal for $\mathfrak{s l}_{3}$

- There are 6 one dimensional weight spaces and one two-dimensional weight space.
- The generators F_{1} and F_{2} act between weight spaces.

The adjoint crystal for $\mathfrak{s l}_{3}$

- There are 6 one dimensional weight spaces and one two-dimensional weight space.
- The generators F_{1} and F_{2} act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.

The adjoint crystal for $\mathfrak{s l}_{3}$

- There are 6 one dimensional weight spaces and one two-dimensional weight space.
- The generators F_{1} and F_{2} act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.
- If we use $U_{q}\left(\mathfrak{s l}_{3}\right)$ and 'rescale' the operators, then "at $q=0$ ", they match up.

The adjoint crystal for $\mathfrak{s l}_{3}$

- There are 6 one dimensional weight spaces and one two-dimensional weight space.
- The generators F_{1} and F_{2} act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.
- If we use $U_{q}\left(\mathfrak{s l}_{3}\right)$ and 'rescale' the operators, then "at $q=0$ ", they match up.

The adjoint crystal for $\mathfrak{s l}_{3}$

- There are 6 one dimensional weight spaces and one two-dimensional weight space.
- The generators F_{1} and F_{2} act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.
- If we use $U_{q}\left(\mathfrak{s l}_{3}\right)$ and 'rescale' the operators, then "at $q=0$ ", they match up. You get a colored directed graph.

The adjoint crystal for $\mathfrak{s l}_{3}$

- Often the vertices of the crystal graph can be parametrized by combinatorial objects.

The adjoint crystal for $\mathfrak{s l}_{3}$

- Often the vertices of the crystal graph can be parametrized by combinatorial objects.

The adjoint crystal for $\mathfrak{s l}_{3}$

- Often the vertices of the crystal graph can be parametrized by combinatorial objects.
- Then the combinatorics gives information about representation theory, and vise-versa.

The adjoint crystal for $\mathfrak{s l}_{3}$

- Often the vertices of the crystal graph can be parametrized by combinatorial objects.
- Then the combinatorics gives information about representation theory, and vise-versa.
- Here you see that the graded dimension of the representation is the generating function for semi-standard Young tableaux.

Tensor product rule

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- For other types, just treat each $s l_{2}$ independently.
- Consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Demazure crystals (for $\mathfrak{s l}_{3}$)

Demazure crystals (for $\mathfrak{s l}_{3}$)

- For each $w \in W$, there is a 1-dimensional weight space S_{w} of $V(\lambda)$.

Demazure crystals (for $\mathfrak{s l}_{3}$)

- For each $w \in W$, there is a 1-dimensional weight space S_{w} of $V(\lambda)$.
- The Demazure module $V_{w}(\lambda)$ in the $U_{q}^{+}(\mathbf{g})\left(=\left\langle E_{i}\right\rangle\right)$ submodule generated by S_{w}.

Demazure crystals (for $\mathfrak{s l}_{3}$)

- For each $w \in W$, there is a 1-dimensional weight space S_{w} of $V(\lambda)$.
- The Demazure module $V_{w}(\lambda)$ in the $U_{q}^{+}(\mathbf{g})\left(=\left\langle E_{i}\right\rangle\right)$ submodule generated by S_{w}.
- Kashiwara showed that the global basis restricts to a basis of $V_{w}(\lambda)$

Demazure crystals (for $\mathfrak{s l}_{3}$)

- For each $w \in W$, there is a 1-dimensional weight space S_{w} of $V(\lambda)$.
- The Demazure module $V_{w}(\lambda)$ in the $U_{q}^{+}(\mathbf{g})\left(=\left\langle E_{i}\right\rangle\right)$ submodule generated by S_{w}.
- Kashiwara showed that the global basis restricts to a basis of $V_{w}(\lambda)$
- Hence, $V_{w}(\lambda)$ defines a subset $B_{w}(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

Demazure crystals (for $\mathfrak{s l}_{3}$)

$$
B\left(\omega_{1}+\omega_{2}\right)
$$

- For each $w \in W$, there is a 1-dimensional weight space S_{w} of $V(\lambda)$.
- The Demazure module $V_{w}(\lambda)$ in the $U_{q}^{+}(\mathbf{g})\left(=\left\langle E_{i}\right\rangle\right)$ submodule generated by S_{w}.
- Kashiwara showed that the global basis restricts to a basis of $V_{w}(\lambda)$
- Hence, $V_{w}(\lambda)$ defines a subset $B_{w}(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

Demazure crystals (for $\mathfrak{s l}_{3}$)

$$
B\left(\omega_{1}+\omega_{2}\right)
$$

- For each $w \in W$, there is a 1-dimensional weight space S_{w} of $V(\lambda)$.
- The Demazure module $V_{w}(\lambda)$ in the $U_{q}^{+}(\mathbf{g})\left(=\left\langle E_{i}\right\rangle\right)$ submodule generated by S_{w}.
- Kashiwara showed that the global basis restricts to a basis of $V_{w}(\lambda)$
- Hence, $V_{w}(\lambda)$ defines a subset $B_{w}(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

Demazure crystals (for $\mathfrak{s l}_{3}$)

$$
B\left(\omega_{1}+\omega_{2}\right)
$$

- For each $w \in W$, there is a 1-dimensional weight space S_{w} of $V(\lambda)$.
- The Demazure module $V_{w}(\lambda)$ in the $U_{q}^{+}(\mathbf{g})\left(=\left\langle E_{i}\right\rangle\right)$ submodule generated by S_{w}.
- Kashiwara showed that the global basis restricts to a basis of $V_{w}(\lambda)$
- Hence, $V_{w}(\lambda)$ defines a subset $B_{w}(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

Demazure crystals (for $\mathfrak{s l}_{3}$)

$$
B\left(\omega_{1}+\omega_{2}\right)
$$

- For each $w \in W$, there is a 1-dimensional weight space S_{w} of $V(\lambda)$.
- The Demazure module $V_{w}(\lambda)$ in the $U_{q}^{+}(\mathbf{g})\left(=\left\langle E_{i}\right\rangle\right)$ submodule generated by S_{w}.
- Kashiwara showed that the global basis restricts to a basis of $V_{w}(\lambda)$
- Hence, $V_{w}(\lambda)$ defines a subset $B_{w}(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

Demazure crystals (for $\mathfrak{s l}_{3}$)

$$
B\left(\omega_{1}+\omega_{2}\right)
$$

- For each $w \in W$, there is a 1-dimensional weight space S_{w} of $V(\lambda)$.
- The Demazure module $V_{w}(\lambda)$ in the $U_{q}^{+}(\mathbf{g})\left(=\left\langle E_{i}\right\rangle\right)$ submodule generated by S_{w}.
- Kashiwara showed that the global basis restricts to a basis of $V_{w}(\lambda)$
- Hence, $V_{w}(\lambda)$ defines a subset $B_{w}(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

Demazure crystals (for $\mathfrak{s l}_{3}$)

- For each $w \in W$, there is a 1-dimensional weight space S_{w} of $V(\lambda)$.
- The Demazure module $V_{w}(\lambda)$ in the $U_{q}^{+}(\mathbf{g})\left(=\left\langle E_{i}\right\rangle\right)$ submodule generated by S_{w}.
- Kashiwara showed that the global basis restricts to a basis of $V_{w}(\lambda)$
- Hence, $V_{w}(\lambda)$ defines a subset $B_{w}(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

Demazure crystals (for $\mathfrak{s l}_{3}$)

- For each $w \in W$, there is a 1-dimensional weight space S_{w} of $V(\lambda)$.
- The Demazure module $V_{w}(\lambda)$ in the $U_{q}^{+}(\mathbf{g})\left(=\left\langle E_{i}\right\rangle\right)$ submodule generated by S_{w}.
- Kashiwara showed that the global basis restricts to a basis of $V_{w}(\lambda)$
- Hence, $V_{w}(\lambda)$ defines a subset $B_{w}(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

Demazure crystals (for $\mathfrak{s l}_{3}$)

$$
\begin{gathered}
B\left(\omega_{1}+\omega_{2}\right) \\
\cup \\
B_{s_{2} s_{1}}\left(\omega_{1}+\omega_{2}\right)
\end{gathered}
$$

- For each $w \in W$, there is a 1-dimensional weight space S_{w} of $V(\lambda)$.
- The Demazure module $V_{w}(\lambda)$ in the $U_{q}^{+}(\mathbf{g})\left(=\left\langle E_{i}\right\rangle\right)$ submodule generated by S_{w}.
- Kashiwara showed that the global basis restricts to a basis of $V_{w}(\lambda)$
- Hence, $V_{w}(\lambda)$ defines a subset $B_{w}(\lambda)$ of $B(\lambda)$, called the Demazure crystal.
- $B_{w}(\lambda)$ is closed under the e_{i} operators, but not the f_{i} operators.

Kirillov-Reshetikhin crystals

Kirillov-Reshetikhin crystals

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations.

Kirillov-Reshetikhin crystals

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.

Kirillov-Reshetikhin crystals

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do

Kirillov-Reshetikhin crystals

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).

Kirillov-Reshetikhin crystals

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.

Kirillov-Reshetikhin crystals

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known,

Kirillov-Reshetikhin crystals

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

Kirillov-Reshetikhin crystals

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

Kirillov-Reshetikhin crystals

$$
B^{1,2} \text { for } \mathfrak{s l}_{3}:
$$

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

Kirillov-Reshetikhin crystals

$$
B^{1,2} \text { for } \mathfrak{s l}_{3} \text { : }
$$

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

Kirillov-Reshetikhin crystals

$$
B^{1,2} \text { for } \mathfrak{s l}_{3}:
$$

Classically irreducible

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

Kirillov-Reshetikhin crystals

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

Kirillov-Reshetikhin crystals

For D_{n} (with $n \geq 7$)

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

Kirillov-Reshetikhin crystals

For D_{n} (with $n \geq 7$)
$B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)$

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

Kirillov-Reshetikhin crystals

For D_{n} (with $n \geq 7$)

$$
B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)
$$

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

Kirillov-Reshetikhin crystals

For D_{n} (with $n \geq 7$)

$$
B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)
$$

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

Kirillov-Reshetikhin crystals

For D_{n} (with $n \geq 7$)

$$
B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)
$$

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

Kirillov-Reshetikhin crystals

For D_{n} (with $n \geq 7$)

$$
B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)
$$

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

Kirillov-Reshetikhin crystals

For D_{n} (with $n \geq 7$)

$$
B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)
$$

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

Kirillov-Reshetikhin crystals

For D_{n} (with $n \geq 7$)

$$
B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)
$$

- For affine $\mathbf{g}, U_{q}^{\prime}(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov-Reshetikhin crystals $B^{r, s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

Relationship between KR crystals and Demazure crsystals

Relationship between KR crystals and Demazure crsystals

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

Relationship between KR crystals and Demazure crsystals

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level ℓ KR crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_{w}\left(\ell \Lambda_{\tau(0)}\right)$.

Relationship between KR crystals and Demazure crsystals

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level $\ell K R$ crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_{w}\left(\ell \Lambda_{\tau(0)}\right)$.
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in B.

Relationship between KR crystals and Demazure crsystals

For $\mathfrak{s l}_{3}$:

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level $\ell K R$ crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_{w}\left(\ell \Lambda_{\tau(0)}\right)$.
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in B.

Relationship between KR crystals and Demazure crsystals

For $\mathfrak{s l}_{3}: \quad B^{1,1} \otimes B^{2,1}$

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level $\ell K R$ crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_{w}\left(\ell \Lambda_{\tau(0)}\right)$.
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in B.

Relationship between KR crystals and Demazure crsystals

For $\mathfrak{s l}_{3}:$
$B^{1,1} \otimes B^{2,1}$

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level $\ell K R$ crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_{w}\left(\ell \Lambda_{\tau(0)}\right)$.
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in B.

Relationship between KR crystals and Demazure crsystals

For $\mathfrak{s l}_{3}$:
$B^{1,1} \otimes B^{2,1}$
$B_{s_{1} s_{2} s_{1} s_{0}}\left(\Lambda_{0}\right)$

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level ℓ KR crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_{w}\left(\ell \Lambda_{\tau(0)}\right)$.
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in B.

Relationship between KR crystals and Demazure crsystals

For $\mathfrak{s l}_{3}:$
$B^{1,1} \otimes B^{2,1}$

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level ℓ KR crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_{w}\left(\ell \Lambda_{\tau(0)}\right)$.
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in B.

Energy function for a prime KR crystal

Energy function for a prime KR crystal

For $D_{n}^{(1)}$ (non-spin nodes):

Energy function for a prime KR crystal

For $D_{n}^{(1)}$ (non-spin nodes):
$B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)$

Energy function for a prime KR crystal

For $D_{n}^{(1)}$ (non-spin nodes):

$$
B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)
$$

Energy function for a prime KR crystal

For $D_{n}^{(1)}$ (non-spin nodes):
$B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)$

\square
$E=$

Energy function for a prime KR crystal

For $D_{n}^{(1)}$ (non-spin nodes):

$$
B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)
$$

$E=4$

Energy function for a prime KR crystal

For $D_{n}^{(1)}$ (non-spin nodes):

$$
B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)
$$

$E=4 \quad 3$

Energy function for a prime KR crystal

For $D_{n}^{(1)}$ (non-spin nodes):

$$
B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)
$$

3

2
$E=4$

Energy function for a prime KR crystal

For $D_{n}^{(1)}$ (non-spin nodes):

$$
B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)
$$

3

2

2

Energy function for a prime KR crystal

For $D_{n}^{(1)}$ (non-spin nodes):

$$
B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)
$$

$E=$
4

3

2

2

1

Energy function for a prime KR crystal

For $D_{n}^{(1)}$ (non-spin nodes):

$$
B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)
$$

$E=$
4

2

2

1

0

Energy function for a prime KR crystal

For $D_{n}^{(1)}$ (non-spin nodes):

$$
B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)
$$

3

2

2

1

0

- The energy function counts the number of vertical dominoes that can be removed.

Energy function for a prime KR crystal

For $D_{n}^{(1)}$ (non-spin nodes):
$B^{5,2} \cong B\left(2 \omega_{5}\right) \oplus B\left(\omega_{3}+\omega_{5}\right) \oplus B\left(\omega_{1}+\omega_{5}\right) \oplus B\left(2 \omega_{3}\right) \oplus B\left(\omega_{1}+\omega_{3}\right) \oplus B\left(2 \omega_{1}\right)$

3

2

2

1

0

- The energy function counts the number of vertical dominoes that can be removed.
- In other types it is similar, but the shape being removed changes a bit.

Energy function for a composite KR crystal

Energy function for a composite KR crystal

There is a unique $H=H_{B_{2}, B_{1}}: B_{2} \otimes B_{1} \rightarrow \mathbb{Z}$ such that

Energy function for a composite KR crystal

There is a unique $H=H_{B_{2}, B_{1}}: B_{2} \otimes B_{1} \rightarrow \mathbb{Z}$ such that

- $H_{B_{2}, B_{1}}\left(u_{B_{2}} \otimes u_{B_{1}}\right)=0$

Energy function for a composite KR crystal

There is a unique $H=H_{B_{2}, B_{1}}: B_{2} \otimes B_{1} \rightarrow \mathbb{Z}$ such that

- $H_{B_{2}, B_{1}}\left(u_{B_{2}} \otimes u_{B_{1}}\right)=0$
- For all $b_{2} \in B_{2}, b_{1} \in B_{1}$,

$$
H\left(e_{i}\left(b_{2} \otimes b_{1}\right)\right)=\left\{\begin{aligned}
-1 & \text { if } i=0 \text { and LL } \\
1 & \text { if } i=0 \text { and RR } \\
0 & \text { otherwise }
\end{aligned}\right.
$$

Energy function for a composite KR crystal

There is a unique $H=H_{B_{2}, B_{1}}: B_{2} \otimes B_{1} \rightarrow \mathbb{Z}$ such that

- $H_{B_{2}, B_{1}}\left(u_{B_{2}} \otimes u_{B_{1}}\right)=0$
- For all $b_{2} \in B_{2}, b_{1} \in B_{1}$,

$$
H\left(e_{i}\left(b_{2} \otimes b_{1}\right)\right)=\left\{\begin{aligned}
-1 & \text { if } i=0 \text { and LL } \\
1 & \text { if } i=0 \text { and RR } \\
0 & \text { otherwise }
\end{aligned}\right.
$$

LL means: e_{0} acts on the left in both $b_{2} \otimes b_{1}$ and $\sigma\left(b_{2} \otimes b_{1}\right)$. RR means: e_{0} acts on the left in both $b_{2} \otimes b_{1}$ and $\sigma\left(b_{2} \otimes b_{1}\right)$.

Energy function for a composite KR crystal

Energy function for a composite KR crystal

For $B=B^{r_{N}, s_{N}} \otimes \cdots \otimes B^{r_{1}, s_{1}}, 1 \leq i \leq N$ and $i<j \leq N$, set

$$
E_{i}:=E_{B_{i}^{r}, s_{i}} \sigma_{1} \sigma_{2} \cdots \sigma_{i-1} \quad \text { and } \quad H_{j, i}:=H_{i} \sigma_{i+1} \sigma_{i+2} \cdots \sigma_{j-1}
$$

where σ_{i} and H_{i} act on the i-th and $(i+1)$-st tensor factors . Then

$$
E_{B}:=\sum_{N \geq j>i \geq 1} H_{j, i}+\sum_{i=1}^{N} E_{i} .
$$

Main Theorem

Main Theorem

Theorem (Schilling-T-, conjectured by HKOTT)

Main Theorem

Theorem (Schilling-T-, conjectured by HKOTT)

Fix \mathbf{g} of non-exceptional affine type, and let $B=B^{r_{1}, c_{1} \ell} \otimes \cdots \otimes B^{r_{k}, c_{r_{k}} \ell}$ be a composite $K R$ crystal of level ℓ. Then the isomorphism between B and the corresponding Demazure crystal $B_{w}\left(\ell \Lambda_{\tau(0)}\right)$ intertwines the energy function with the affine grading.

Main Theorem

Theorem (Schilling-T-, conjectured by HKOTT)

Fix \mathbf{g} of non-exceptional affine type, and let $B=B^{r_{1}, c_{1} \ell} \otimes \cdots \otimes B^{r_{k}, c_{r_{k}} \ell}$ be a composite KR crystal of level ℓ. Then the isomorphism between B and the corresponding Demazure crystal $B_{w}\left(\ell \Lambda_{\tau(0)}\right)$ intertwines the energy function with the affine grading.

Sketch of proof

Main Theorem

Theorem (Schilling-T-, conjectured by HKOTT)

Fix \mathbf{g} of non-exceptional affine type, and let $B=B^{r_{1}, c_{1} \ell} \otimes \cdots \otimes B^{r_{k}, c_{k} \ell}$ be a composite KR crystal of level ℓ. Then the isomorphism between B and the corresponding Demazure crystal $B_{w}\left(\ell \Lambda_{\tau(0)}\right)$ intertwines the energy function with the affine grading.

Sketch of proof

- Using explicit models show that, for all $b \in B^{r, c_{r} \ell}, E\left(f_{0}(b)\right) \leq E(b)+1$. Furthermore, if $\varepsilon_{i}(b)>\ell$, then this is equality.

Main Theorem

Theorem (Schilling-T-, conjectured by HKOTT)

Fix \mathbf{g} of non-exceptional affine type, and let $B=B^{r_{1}, c_{1} \ell} \otimes \cdots \otimes B^{r_{k}, c_{r_{k}} \ell}$ be a composite KR crystal of level ℓ. Then the isomorphism between B and the corresponding Demazure crystal $B_{w}\left(\ell \Lambda_{\tau(0)}\right)$ intertwines the energy function with the affine grading.

Sketch of proof

- Using explicit models show that, for all $b \in B^{r, c_{r} \ell}, E\left(f_{0}(b)\right) \leq E(b)+1$. Furthermore, if $\varepsilon_{i}(b)>\ell$, then this is equality.
- An inductive argument gives the same statement for B a composite KR crystal of level ℓ.

Main Theorem

Theorem (Schilling-T-, conjectured by HKOTT)

Fix \mathbf{g} of non-exceptional affine type, and let $B=B^{r_{1}, c_{1} \ell} \otimes \cdots \otimes B^{r_{k}, c_{r_{k}} \ell}$ be a composite KR crystal of level ℓ. Then the isomorphism between B and the corresponding Demazure crystal $B_{w}\left(\ell \Lambda_{\tau(0)}\right)$ intertwines the energy function with the affine grading.

Sketch of proof

- Using explicit models show that, for all $b \in B^{r, c_{r} \ell}, E\left(f_{0}(b)\right) \leq E(b)+1$. Furthermore, if $\varepsilon_{i}(b)>\ell$, then this is equality.
- An inductive argument gives the same statement for B a composite KR crystal of level ℓ.
- Since $\varphi\left(b_{\ell \Lambda_{0}}\right)=\ell$, the result follows for tensor product rule.

Main Theorem

Theorem (Schilling-T-, conjectured by HKOTT)

Fix \mathbf{g} of non-exceptional affine type, and let $B=B^{r_{1}, c_{r_{1}} \ell} \otimes \cdots \otimes B^{r_{k}, c_{k} \ell}$ be a composite KR crystal of level ℓ. Then the isomorphism between B and the corresponding Demazure crystal $B_{w}\left(\ell \Lambda_{\tau(0)}\right)$ intertwines the energy function with the affine grading.

Sketch of proof

- Using explicit models show that, for all $b \in B^{r, c_{r} \ell}, E\left(f_{0}(b)\right) \leq E(b)+1$. Furthermore, if $\varepsilon_{i}(b)>\ell$, then this is equality.
- An inductive argument gives the same statement for B a composite KR crystal of level ℓ.
- Since $\varphi\left(b_{\ell \Lambda_{0}}\right)=\ell$, the result follows for tensor product rule.

Corollary

Main Theorem

Theorem (Schilling-T-, conjectured by HKOTT)

Fix \mathbf{g} of non-exceptional affine type, and let $B=B^{r_{1}, c_{r_{1}} \ell} \otimes \cdots \otimes B^{r_{k}, c_{k} \ell}$ be a composite $K R$ crystal of level ℓ. Then the isomorphism between B and the corresponding Demazure crystal $B_{w}\left(\ell \Lambda_{\tau(0)}\right)$ intertwines the energy function with the affine grading.

Sketch of proof

- Using explicit models show that, for all $b \in B^{r, c_{r} \ell}, E\left(f_{0}(b)\right) \leq E(b)+1$. Furthermore, if $\varepsilon_{i}(b)>\ell$, then this is equality.
- An inductive argument gives the same statement for B a composite KR crystal of level ℓ.
- Since $\varphi\left(b_{\ell \Lambda_{0}}\right)=\ell$, the result follows for tensor product rule.

Corollary

$E(b)-E(u)$ records the minimal number of f_{0} in a sequence of operators taking the ground state path u to b.

Macdonald polynomials

Macdonald polynomials

- Work of Sanderson and Ion shows that, in types $A_{n}^{(1)}, D_{n}^{(1)}$ and $E_{n}^{(1)}$, the non-symmetric Macdonald polynomials satisfy

$$
E_{\lambda}(q, 0)=\left.q^{c} \operatorname{ch}\left(V_{w}\left(\Lambda_{\tau(0)}\right)\right)\right|_{e^{\delta}=q, e^{\Lambda_{0}}=1} .
$$

Macdonald polynomials

- Work of Sanderson and Ion shows that, in types $A_{n}^{(1)}, D_{n}^{(1)}$ and $E_{n}^{(1)}$, the non-symmetric Macdonald polynomials satisfy

$$
E_{\lambda}(q, 0)=\left.q^{c} \operatorname{ch}\left(V_{w}\left(\Lambda_{\tau(0)}\right)\right)\right|_{e^{\delta}=q, e^{\Lambda_{0}}=1} .
$$

- Our results imply that, in types $A_{n}^{(1)}$ and $D_{n}^{(1)}$, the symmetric Macdonald polynomials satisfy.

$$
P_{\lambda}(q, 0)=\sum_{b \in B} q^{-E(b)} e^{\mathrm{wt}(b)}
$$

where E is the combinatorial energy function (called D in our paper).

Macdonald polynomials

- Work of Sanderson and Ion shows that, in types $A_{n}^{(1)}, D_{n}^{(1)}$ and $E_{n}^{(1)}$, the non-symmetric Macdonald polynomials satisfy

$$
E_{\lambda}(q, 0)=\left.q^{c} \operatorname{ch}\left(V_{w}\left(\Lambda_{\tau(0)}\right)\right)\right|_{e^{\delta}=q, e^{\Lambda_{0}}=1} .
$$

- Our results imply that, in types $A_{n}^{(1)}$ and $D_{n}^{(1)}$, the symmetric Macdonald polynomials satisfy.

$$
P_{\lambda}(q, 0)=\sum_{b \in B} q^{-E(b)} e^{\mathrm{wt}(b)}
$$

where E is the combinatorial energy function (called D in our paper).

- We also see the non-symmetric Macdonald polytomials as partial sums over KR crystals.

Example

Example

$$
P_{-2 \omega_{2}}(x ; q, 0)=x_{1}^{2}+(q+1) x_{1} x_{2}+x_{2}^{2}+(q+1) x_{1} x_{3}+(q+1) x_{2} x_{3}+x_{3}^{2}
$$

Example

$$
P_{-2 \omega_{2}}(x ; q, 0)=x_{1}^{2}+(q+1) x_{1} x_{2}+x_{2}^{2}+(q+1) x_{1} x_{3}+(q+1) x_{2} x_{3}+x_{3}^{2}
$$

In $\mathfrak{s l}_{3}, B^{1,1} \otimes B^{1,1}$ looks like:

Example

$$
P_{-2 \omega_{2}}(x ; q, 0)=x_{1}^{2}+(q+1) x_{1} x_{2}+x_{2}^{2}+(q+1) x_{1} x_{3}+(q+1) x_{2} x_{3}+x_{3}^{2}
$$

In $\mathfrak{s l}_{3}, B^{1,1} \otimes B^{1,1}$ looks like:
where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.

Example

$$
\begin{aligned}
P_{-2 \omega_{2}}(x ; q, 0) & =x_{1}^{2}+(q+1) x_{1} x_{2}+x_{2}^{2}+(q+1) x_{1} x_{3}+(q+1) x_{2} x_{3}+x_{3}^{2} \\
& =
\end{aligned}
$$

In $\mathfrak{s l}_{3}, B^{1,1} \otimes B^{1,1}$ looks like:
where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.

Example

$$
\begin{aligned}
P_{-2 \omega_{2}}(x ; q, 0) & =x_{1}^{2}+(q+1) x_{1} x_{2}+x_{2}^{2}+(q+1) x_{1} x_{3}+(q+1) x_{2} x_{3}+x_{3}^{2} \\
& =q\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)
\end{aligned}
$$

In $\mathfrak{s l}_{3}, B^{1,1} \otimes B^{1,1}$ looks like:
where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.

Example

$$
\begin{aligned}
P_{-2 \omega_{2}}(x ; q, 0) & =x_{1}^{2}+(q+1) x_{1} x_{2}+x_{2}^{2}+(q+1) x_{1} x_{3}+(q+1) x_{2} x_{3}+x_{3}^{2} \\
& =q\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)
\end{aligned}
$$

In $\mathfrak{s l}_{3}, B^{1,1} \otimes B^{1,1}$ looks like:
where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.

Example

$$
\begin{aligned}
P_{-2 \omega_{2}}(x ; q, 0)= & x_{1}^{2}+(q+1) x_{1} x_{2}+x_{2}^{2}+(q+1) x_{1} x_{3}+(q+1) x_{2} x_{3}+x_{3}^{2} \\
= & q\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right) \\
& +
\end{aligned}
$$

In $\mathfrak{s l}_{3}, B^{1,1} \otimes B^{1,1}$ looks like:
where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.

Example

$$
\begin{aligned}
P_{-2 \omega_{2}}(x ; q, 0)= & x_{1}^{2}+(q+1) x_{1} x_{2}+x_{2}^{2}+(q+1) x_{1} x_{3}+(q+1) x_{2} x_{3}+x_{3}^{2} \\
= & q\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right) \\
& +x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}+x_{1} x_{3}+x_{2} x_{3}+x_{3}^{2}
\end{aligned}
$$

In $\mathfrak{s l}_{3}, B^{1,1} \otimes B^{1,1}$ looks like:
where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.

Whittaker functions

Whittaker functions

- Gerasimov, Lebedev, Oblezin showed that q-deformed $\mathfrak{g l}_{n}$-Whittaker functions are Macdonald polynomials specialized at $t=0$.

Whittaker functions

- Gerasimov, Lebedev, Oblezin showed that q-deformed $\mathfrak{g l}_{n}$-Whittaker functions are Macdonald polynomials specialized at $t=0$.
- So, by Sanderson and Ion, they can be expressed using Demazure characters.

Whittaker functions

- Gerasimov, Lebedev, Oblezin showed that q-deformed $\mathfrak{g l}_{n}$-Whittaker functions are Macdonald polynomials specialized at $t=0$.
- So, by Sanderson and Ion, they can be expressed using Demazure characters.
- Hence, by our results they can be expressed in terms of KR crystals and the energy function.

Future directions

Type $C_{n}^{(1)}$ Macdonald polynomials and Demazure crystals?

Type $C_{n}^{(1)}$ Macdonald polynomials and Demazure crystals?

- Lenart recently showed that type $C_{n}^{(1)}$ Macdonlad polynomials (at $t=0$) can be expressed as sums over tensor products of $K R$-crystals, where q counts energy.

Type $C_{n}^{(1)}$ Macdonald polynomials and Demazure crystals?

- Lenart recently showed that type $C_{n}^{(1)}$ Macdonlad polynomials (at $t=0$) can be expressed as sums over tensor products of $K R$-crystals, where q counts energy.

Type $C_{n}^{(1)}$ Macdonald polynomials and Demazure crystals?

$$
B^{1,1} \otimes B^{1,1}
$$

- Lenart recently showed that type $C_{n}^{(1)}$ Macdonlad polynomials (at $t=0$) can be expressed as sums over tensor products of $K R$-crystals, where q counts energy.

Type $C_{n}^{(1)}$ Macdonald polynomials and Demazure crystals?

$$
B^{1,1} \otimes B^{1,1}
$$

- Lenart recently showed that type $C_{n}^{(1)}$ Macdonlad polynomials (at $t=0$) can be expressed as sums over tensor products of $K R$-crystals, where q counts energy.

Type $C_{n}^{(1)}$ Macdonald polynomials and Demazure crystals?

$$
B^{1,1} \otimes B^{1,1} \otimes b_{\Lambda_{0}}
$$

- Lenart recently showed that type $C_{n}^{(1)}$ Macdonlad polynomials (at $t=0$) can be expressed as sums over tensor products of $K R$-crystals, where q counts energy.

Type $C_{n}^{(1)}$ Macdonald polynomials and Demazure crystals?

$$
B^{1,1} \otimes B^{1,1} \otimes b_{\Lambda_{0}}
$$

- Lenart recently showed that type $C_{n}^{(1)}$ Macdonlad polynomials (at $t=0$) can be expressed as sums over tensor products of $K R$-crystals, where q counts energy.

Type $C_{n}^{(1)}$ Macdonald polynomials and Demazure crystals?

$$
B^{1,1} \otimes B^{1,1} \otimes b_{\Lambda_{0}}
$$

- Lenart recently showed that type $C_{n}^{(1)}$ Macdonlad polynomials (at $t=0$) can be expressed as sums over tensor products of $K R$-crystals, where q counts energy.

Type $C_{n}^{(1)}$ Macdonald polynomials and Demazure crystals？

$$
B^{1,1} \otimes B^{1,1} \otimes b_{\Lambda_{0}} \quad B_{s_{1} s_{2} s_{1} s_{2} s_{0}}\left(\Lambda_{0}\right)
$$

回•回•放

－Lenart recently showed that type $C_{n}^{(1)}$ Macdonlad polynomials（at $t=0$ ） can be expressed as sums over tensor products of $K R$－crystals，where q counts energy．

Type $C_{n}^{(1)}$ Macdonald polynomials and Demazure crystals?

$$
B^{1,1} \otimes B^{1,1} \otimes b_{\Lambda_{0}} \quad B_{s_{1} s_{2} s_{1} s_{2} s_{0}}\left(\Lambda_{0}\right)
$$

$T \otimes 1 \otimes b_{1}$

- Lenart recently showed that type $C_{n}^{(1)}$ Macdonlad polynomials (at $t=0$) can be expressed as sums over tensor products of $K R$-crystals, where q counts energy.

Type $C_{n}^{(1)}$ Macdonald polynomials and Demazure crystals？

$B^{1,1} \otimes B^{1,1}$
$\otimes b_{\Lambda_{0}}$
$B_{s_{1} s_{2} s_{1} s_{2} s_{0}}\left(\Lambda_{0}\right)$
$B_{s_{2} s_{1} s_{2}}\left(\Lambda_{2}\right)$

团•回•b。

－Lenart recently showed that type $C_{n}^{(1)}$ Macdonlad polynomials（at $t=0$ ） can be expressed as sums over tensor products of $K R$－crystals，where q counts energy．

Type $C_{n}^{(1)}$ Macdonald polynomials and Demazure crystals?

$$
B^{1,1} \otimes B^{1,1} \otimes b_{\Lambda_{0}} \quad B_{s_{1} s_{2} s_{1} s_{2} s_{0}}\left(\Lambda_{0}\right) \quad B_{s_{2} s_{1} s_{2}}\left(\Lambda_{2}\right)
$$

Type $C_{n}^{(1)}$ Macdonald polynomials and Demazure crystals?

$$
B^{1,1} \otimes B^{1,1} \otimes b_{\Lambda_{0}} \quad B_{s_{1} s_{2} s_{1} s_{2} s_{0}}\left(\Lambda_{0}\right) \quad B_{s_{2} s_{1} s_{2}}\left(\Lambda_{2}\right)
$$

- These tensor products seem to break up as unions of Demazure modules.

Type $C_{n}^{(1)}$ Macdonald polynomials and Demazure crystals?

$$
B^{1,1} \otimes B^{1,1} \otimes b_{\Lambda_{0}} \quad B_{s_{1} s_{2} s_{1} s_{2} s_{0}}\left(\Lambda_{0}\right) \quad B_{s_{2} s_{1} s_{2}}\left(\Lambda_{2}\right)
$$

- These tensor products seem to break up as unions of Demazure modules.
- Via Lenart's results, this would give a formula for Macdonald polynomials as sums of Demazure Characters.

[^0]: ${ }^{1}$ Slides and notes available at www-math.mit.edu/~ptingley/

