Demazure crystals, Kirillov–Reshetikhin crystals, and the energy function¹

Peter Tingley (joint with Anne Schilling)

Massachusetts Institute of Technology

Wake forest, Sept. 24, 2011

¹Slides and notes available at www-math.mit.edu/~ptingley/

Outline

Background

- Highest weight crystals
- Demazure crystals
- Kirillov–Reshetikhin crystals
- Relationship between KR crystals and Demazure crsystals.
- The energy function
- Results
- 3 Applications
 - Macdonald polynomials
 - Whittaker functions

Future directions

• Macdonald polynomials from Demazure characters in type $C_n^{(1)}$?

• There are 6 one dimensional weight spaces and one two-dimensional weight space.

Background Highest weight crystals

The adjoint crystal for \mathfrak{sl}_3

• There are 6 one dimensional weight spaces and one two-dimensional weight space.

Background Highest weight crystals

- There are 6 one dimensional weight spaces and one two-dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.

- There are 6 one dimensional weight spaces and one two-dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.

- There are 6 one dimensional weight spaces and one two-dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.

- There are 6 one dimensional weight spaces and one two-dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.
- If we use $U_q(\mathfrak{sl}_3)$ and 'rescale' the operators, then "at q = 0", they match up.

- There are 6 one dimensional weight spaces and one two-dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.
- If we use $U_q(\mathfrak{sl}_3)$ and 'rescale' the operators, then "at q = 0", they match up.

- There are 6 one dimensional weight spaces and one two-dimensional weight space.
- The generators F_1 and F_2 act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.
- If we use $U_q(\mathfrak{sl}_3)$ and 'rescale' the operators, then "at q = 0", they match up. You get a colored directed graph.

Peter Tingley (MIT)

• Often the vertices of the crystal graph can be parametrized by combinatorial objects.

• Often the vertices of the crystal graph can be parametrized by combinatorial objects.

- Often the vertices of the crystal graph can be parametrized by combinatorial objects.
- Then the combinatorics gives information about representation theory, and vise-versa.

Highest weight crystals

The adjoint crystal for \mathfrak{sl}_3

- Often the vertices of the crystal graph can be parametrized by combinatorial objects.
- Then the combinatorics gives information about representation theory, and vise-versa.
- Here you see that the graded dimension of the representation is the ۰ generating function for semi-standard Young tableaux.

Peter Tingley (MIT)

э.

2

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each *sl*₂ independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each *sl*₂ independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each *sl*₂ independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

- For \mathfrak{sl}_2 , crystals are just directed segments.
- For other types, just treat each sl_2 independently.
- Consider $B(\omega_1) \otimes B(\omega_2)$ for \mathfrak{sl}_3 .

Demazure crystals

Demazure crystals (for \mathfrak{sl}_3)

Peter Tingley (MIT)

• For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.

- For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.
- The Demazure module $V_w(\lambda)$ in the $U_q^+(\mathbf{g}) (= \langle E_i \rangle)$ submodule generated by S_w .

- For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.
- The Demazure module $V_w(\lambda)$ in the $U_q^+(\mathbf{g}) (= \langle E_i \rangle)$ submodule generated by S_w .
- Kashiwara showed that the global basis restricts to a basis of $V_w(\lambda)$

Demazure crystals

- For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.
- The Demazure module $V_w(\lambda)$ in the $U_a^+(\mathbf{g}) (= \langle E_i \rangle)$ submodule generated by S_w .
- Kashiwara showed that the global basis restricts to a basis of $V_w(\lambda)$
- Hence, $V_w(\lambda)$ defines a subset $B_w(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

 $B(\omega_1 + \omega_2)$

- For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.
- The Demazure module $V_w(\lambda)$ in the $U_q^+(\mathbf{g}) (= \langle E_i \rangle)$ submodule generated by S_w .
- Kashiwara showed that the global basis restricts to a basis of $V_w(\lambda)$
- Hence, $V_w(\lambda)$ defines a subset $B_w(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

- For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.
- The Demazure module V_w(λ) in the U⁺_q(**g**) (= (E_i)) submodule generated by S_w.
- Kashiwara showed that the global basis restricts to a basis of $V_w(\lambda)$
- Hence, $V_w(\lambda)$ defines a subset $B_w(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

- For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.
- The Demazure module V_w(λ) in the U⁺_q(**g**) (= (E_i)) submodule generated by S_w.
- Kashiwara showed that the global basis restricts to a basis of $V_w(\lambda)$
- Hence, $V_w(\lambda)$ defines a subset $B_w(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

- For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.
- The Demazure module V_w(λ) in the U⁺_q(**g**) (= (E_i)) submodule generated by S_w.
- Kashiwara showed that the global basis restricts to a basis of $V_w(\lambda)$
- Hence, $V_w(\lambda)$ defines a subset $B_w(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

- For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.
- The Demazure module V_w(λ) in the U⁺_q(**g**) (= (E_i)) submodule generated by S_w.
- Kashiwara showed that the global basis restricts to a basis of $V_w(\lambda)$
- Hence, $V_w(\lambda)$ defines a subset $B_w(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

- For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.
- The Demazure module V_w(λ) in the U⁺_q(**g**) (= (E_i)) submodule generated by S_w.
- Kashiwara showed that the global basis restricts to a basis of $V_w(\lambda)$
- Hence, $V_w(\lambda)$ defines a subset $B_w(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

- For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.
- The Demazure module V_w(λ) in the U⁺_q(**g**) (= (E_i)) submodule generated by S_w.
- Kashiwara showed that the global basis restricts to a basis of $V_w(\lambda)$
- Hence, $V_w(\lambda)$ defines a subset $B_w(\lambda)$ of $B(\lambda)$, called the Demazure crystal.

- For each $w \in W$, there is a 1-dimensional weight space S_w of $V(\lambda)$.
- The Demazure module V_w(λ) in the U⁺_q(**g**) (= (E_i)) submodule generated by S_w.
- Kashiwara showed that the global basis restricts to a basis of $V_w(\lambda)$
- Hence, $V_w(\lambda)$ defines a subset $B_w(\lambda)$ of $B(\lambda)$, called the Demazure crystal.
- $B_w(\lambda)$ is closed under the e_i operators, but not the f_i operators.

Background Kirillov-Reshetikhin crystals

Background Kirillov-Reshetikhin crystals

Kirillov–Reshetikhin crystals

• For affine \mathbf{g} , $U_q'(\mathbf{g})$ has finite dimensional representations.

• For affine **g**, $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.

- For affine **g**, $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do

- For affine **g**, $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).

- For affine **g**, $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.

- For affine **g**, $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known,

- For affine **g**, $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

- For affine **g**, $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

 $B^{1,2}$ for \mathfrak{sl}_3 :

- For affine **g**, $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

- For affine **g**, $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

- For affine **g**, $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

- For affine **g**, $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

For D_n (with $n \ge 7$)

- For affine **g**, $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

For D_n (with $n \ge 7$)

 $B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$

- For affine **g**, $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

For D_n (with $n \ge 7$)

 $B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$

- For affine **g**, $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

For D_n (with $n \ge 7$)

 $B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$

- For affine **g**, $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

For D_n (with $n \ge 7$)

 $B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$

- For affine \mathbf{g} , $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

For D_n (with $n \ge 7$)

 $B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$

- For affine \mathbf{g} , $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

For D_n (with $n \ge 7$)

 $B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$

- For affine **g**, $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

For D_n (with $n \ge 7$)

 $B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$

- For affine **g**, $U'_q(\mathbf{g})$ has finite dimensional representations. But these usually do not have crystal bases.
- In all non-exceptional types, the Kirillov–Reshetikhin crystals $B^{r,s}$ (for $r \in I, s \in \mathbb{N}$) do (Okado, Okado-Schilling).
- These have "tableaux" type realizations.
- Classical decompositions are known, and are multiplicity free.

Relationship between KR crystals and Demazure crsystals

Relationship between KR crystals and Demazure crsystals

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

Peter Tingley (MIT)

Energy function

Wake forest, Sept. 24, 2011 7 / 14

Relationship between KR crystals and Demazure crsystals

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

• In non-exceptional types, a tensor product B of level ℓ KR crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$.

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level ℓ KR crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$.
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in B.

For \mathfrak{sl}_3 :

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level ℓ KR crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$.
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in B.

For \mathfrak{sl}_3 : $B^{1,1} \otimes B^{2,1}$

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level ℓ KR crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$.
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in B.

For \mathfrak{sl}_3 : $B^{1,1} \otimes B^{2,1}$

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level ℓ KR crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$.
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in B.

Background

Relationship between KR crystals and Demazure crsystals.

 $B_{s_1s_2s_1s_0}(\Lambda_0)$

Relationship between KR crystals and Demazure crsystals

For \mathfrak{sl}_3 :

 $B^{1,1} \otimes B^{2,1}$

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level ℓ KR crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$.
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in B.

Background

Relationship between KR crystals and Demazure crsystals.

Relationship between KR crystals and Demazure crsystals

 $B^{1,1}\otimes B^{2,1}$

Theorem (Fourier-Littelmann, Naito-Sagaki, Fourier-Schilling-Shimozono, ?)

- In non-exceptional types, a tensor product B of level ℓ KR crystals is isomorphic (as a classical crystal) to a Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$.
- There is a unique isomorphism such that the pullbacks of 0 arrows in the Demazure crystal are 0-arrows in B.

Peter Tingley (MIT)

Energy function

For $D_n^{(1)}$ (non-spin nodes):

For $D_n^{(1)}$ (non-spin nodes):

For $D_n^{(1)}$ (non-spin nodes):

For $D_n^{(1)}$ (non-spin nodes):

 $B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$

E =

For $D_n^{(1)}$ (non-spin nodes):

 $B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$

E = 4

For $D_n^{(1)}$ (non-spin nodes):

For $D_n^{(1)}$ (non-spin nodes):

 $B^{5,2} \cong B(2\omega_5) \oplus B(\omega_3 + \omega_5) \oplus B(\omega_1 + \omega_5) \oplus B(2\omega_3) \oplus B(\omega_1 + \omega_3) \oplus B(2\omega_1)$

• The energy function counts the number of vertical dominoes that can be removed.

For $D_n^{(1)}$ (non-spin nodes):

- The energy function counts the number of vertical dominoes that can be removed.
- In other types it is similar, but the shape being removed changes a bit.

There is a unique $H = H_{B_2,B_1} : B_2 \otimes B_1 \to \mathbb{Z}$ such that

There is a unique $H = H_{B_2,B_1} : B_2 \otimes B_1 \to \mathbb{Z}$ such that

• $H_{B_2,B_1}(u_{B_2}\otimes u_{B_1})=0$

There is a unique $H = H_{B_2,B_1} : B_2 \otimes B_1 \to \mathbb{Z}$ such that

- $H_{B_2,B_1}(u_{B_2}\otimes u_{B_1})=0$
- For all $b_2 \in B_2, b_1 \in B_1$,

$$H(e_i(b_2 \otimes b_1)) = \begin{cases} -1 & \text{if } i = 0 \text{ and } LL \\ 1 & \text{if } i = 0 \text{ and } RR \\ 0 & \text{otherwise.} \end{cases}$$

There is a unique $H = H_{B_2,B_1} : B_2 \otimes B_1 \to \mathbb{Z}$ such that

- $H_{B_2,B_1}(u_{B_2}\otimes u_{B_1})=0$
- For all $b_2 \in B_2, b_1 \in B_1$,

$$H(e_i(b_2 \otimes b_1)) = \begin{cases} -1 & \text{if } i = 0 \text{ and } LL \\ 1 & \text{if } i = 0 \text{ and } RR \\ 0 & \text{otherwise.} \end{cases}$$

LL means: e_0 acts on the left in both $b_2 \otimes b_1$ and $\sigma(b_2 \otimes b_1)$. RR means: e_0 acts on the left in both $b_2 \otimes b_1$ and $\sigma(b_2 \otimes b_1)$.

For
$$B = B^{r_N, s_N} \otimes \cdots \otimes B^{r_1, s_1}$$
, $1 \le i \le N$ and $i < j \le N$, set

$$E_i := E_{B^{r_i,s_i}} \sigma_1 \sigma_2 \cdots \sigma_{i-1}$$
 and $H_{j,i} := H_i \sigma_{i+1} \sigma_{i+2} \cdots \sigma_{j-1}$,

where σ_i and H_i act on the *i*-th and (i + 1)-st tensor factors. Then

$$E_B := \sum_{N \ge j > i \ge 1} H_{j,i} + \sum_{i=1}^N E_i.$$

Results

Main Theorem

∃ > ∢

2

Theorem (Schilling-T-, conjectured by HKOTT)

Theorem (Schilling-T-, conjectured by HKOTT)

Fix **g** of non-exceptional affine type, and let $B = B^{r_1,c_{r_1}\ell} \otimes \cdots \otimes B^{r_k,c_{r_k}\ell}$ be a composite KR crystal of level ℓ . Then the isomorphism between B and the corresponding Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$ intertwines the energy function with the affine grading.

Theorem (Schilling-T-, conjectured by HKOTT)

Fix **g** of non-exceptional affine type, and let $B = B^{r_1,c_{r_1}\ell} \otimes \cdots \otimes B^{r_k,c_{r_k}\ell}$ be a composite KR crystal of level ℓ . Then the isomorphism between B and the corresponding Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$ intertwines the energy function with the affine grading.

Sketch of proof

Fix **g** of non-exceptional affine type, and let $B = B^{r_1,c_{r_1}\ell} \otimes \cdots \otimes B^{r_k,c_{r_k}\ell}$ be a composite KR crystal of level ℓ . Then the isomorphism between B and the corresponding Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$ intertwines the energy function with the affine grading.

Sketch of proof

• Using explicit models show that, for all $b \in B^{r,c_r\ell}$, $E(f_0(b)) \le E(b) + 1$. Furthermore, if $\varepsilon_i(b) > \ell$, then this is equality.

Fix **g** of non-exceptional affine type, and let $B = B^{r_1,c_{r_1}\ell} \otimes \cdots \otimes B^{r_k,c_{r_k}\ell}$ be a composite KR crystal of level ℓ . Then the isomorphism between B and the corresponding Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$ intertwines the energy function with the affine grading.

Sketch of proof

- Using explicit models show that, for all $b \in B^{r,c_r\ell}$, $E(f_0(b)) \le E(b) + 1$. Furthermore, if $\varepsilon_i(b) > \ell$, then this is equality.
- An inductive argument gives the same statement for *B* a composite KR crystal of level ℓ .

Fix **g** of non-exceptional affine type, and let $B = B^{r_1,c_{r_1}\ell} \otimes \cdots \otimes B^{r_k,c_{r_k}\ell}$ be a composite KR crystal of level ℓ . Then the isomorphism between B and the corresponding Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$ intertwines the energy function with the affine grading.

Sketch of proof

- Using explicit models show that, for all $b \in B^{r,c_r\ell}$, $E(f_0(b)) \le E(b) + 1$. Furthermore, if $\varepsilon_i(b) > \ell$, then this is equality.
- An inductive argument gives the same statement for *B* a composite KR crystal of level ℓ .
- Since $\varphi(b_{\ell\Lambda_0}) = \ell$, the result follows for tensor product rule.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Schilling-T-, conjectured by HKOTT)

Fix **g** of non-exceptional affine type, and let $B = B^{r_1,c_{r_1}\ell} \otimes \cdots \otimes B^{r_k,c_{r_k}\ell}$ be a composite KR crystal of level ℓ . Then the isomorphism between B and the corresponding Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$ intertwines the energy function with the affine grading.

Sketch of proof

- Using explicit models show that, for all $b \in B^{r,c_r\ell}$, $E(f_0(b)) \le E(b) + 1$. Furthermore, if $\varepsilon_i(b) > \ell$, then this is equality.
- An inductive argument gives the same statement for *B* a composite KR crystal of level ℓ .
- Since $\varphi(b_{\ell\Lambda_0}) = \ell$, the result follows for tensor product rule.

Corollary

10/14

Fix **g** of non-exceptional affine type, and let $B = B^{r_1,c_{r_1}\ell} \otimes \cdots \otimes B^{r_k,c_{r_k}\ell}$ be a composite KR crystal of level ℓ . Then the isomorphism between B and the corresponding Demazure crystal $B_w(\ell \Lambda_{\tau(0)})$ intertwines the energy function with the affine grading.

Sketch of proof

- Using explicit models show that, for all $b \in B^{r,c_r\ell}$, $E(f_0(b)) \le E(b) + 1$. Furthermore, if $\varepsilon_i(b) > \ell$, then this is equality.
- An inductive argument gives the same statement for *B* a composite KR crystal of level ℓ .
- Since $\varphi(b_{\ell\Lambda_0}) = \ell$, the result follows for tensor product rule.

Corollary

E(b) - E(u) records the minimal number of f_0 in a sequence of operators taking the ground state path u to b.

Macdonald polynomials

Macdonald polynomials

• Work of Sanderson and Ion shows that, in types $A_n^{(1)}$, $D_n^{(1)}$ and $E_n^{(1)}$, the non-symmetric Macdonald polynomials satisfy

$$E_{\lambda}(q,0) = q^{c} \operatorname{ch}(V_{w}(\Lambda_{\tau(0)}))|_{e^{\delta} = q, e^{\Lambda_{0}} = 1}.$$

Macdonald polynomials

• Work of Sanderson and Ion shows that, in types $A_n^{(1)}, D_n^{(1)}$ and $E_n^{(1)}$, the non-symmetric Macdonald polynomials satisfy

$$E_{\lambda}(q,0) = q^{c} \operatorname{ch}(V_{w}(\Lambda_{\tau(0)}))|_{e^{\delta} = q, e^{\Lambda_{0}} = 1}.$$

• Our results imply that, in types $A_n^{(1)}$ and $D_n^{(1)}$, the symmetric Macdonald polynomials satisfy.

$$P_{\lambda}(q,0) = \sum_{b \in B} q^{-E(b)} e^{\operatorname{wt}(b)},$$

where E is the combinatorial energy function (called D in our paper).

Macdonald polynomials

• Work of Sanderson and Ion shows that, in types $A_n^{(1)}, D_n^{(1)}$ and $E_n^{(1)}$, the non-symmetric Macdonald polynomials satisfy

$$E_{\lambda}(q,0) = q^{c} \operatorname{ch}(V_{w}(\Lambda_{\tau(0)}))|_{e^{\delta} = q, e^{\Lambda_{0}} = 1}.$$

• Our results imply that, in types $A_n^{(1)}$ and $D_n^{(1)}$, the symmetric Macdonald polynomials satisfy.

$$P_{\lambda}(q,0) = \sum_{b \in B} q^{-E(b)} e^{\operatorname{wt}(b)},$$

where E is the combinatorial energy function (called D in our paper).

• We also see the non-symmetric Macdonald polytomials as partial sums over KR crystals.

2

<ロト < 四ト < 三ト < 三ト

$$P_{-2\omega_2}(x;q,0) = x_1^2 + (q+1)x_1x_2 + x_2^2 + (q+1)x_1x_3 + (q+1)x_2x_3 + x_3^2$$

2

<ロト < 四ト < 三ト < 三ト

$$P_{-2\omega_2}(x;q,0) = x_1^2 + (q+1)x_1x_2 + x_2^2 + (q+1)x_1x_3 + (q+1)x_2x_3 + x_3^2$$

In \mathfrak{sl}_3 , $B^{1,1} \otimes B^{1,1}$ looks like:

$$2 \otimes 1 \xrightarrow{2} 3 \otimes 1 \xrightarrow{0} 1 \otimes 1 \xrightarrow{1} 1 \otimes 2 \xrightarrow{1} 2 \otimes 2 \xrightarrow{2} 2 \otimes 3 \xrightarrow{2} 3 \otimes 3,$$
$$\xrightarrow{1} 3 \otimes 2 \xrightarrow{2} 1 \otimes 3 \xrightarrow{7}$$

< □ > < 同 > < 回 > < 回 > < 回

2

$$P_{-2\omega_2}(x;q,0) = x_1^2 + (q+1)x_1x_2 + x_2^2 + (q+1)x_1x_3 + (q+1)x_2x_3 + x_3^2$$

In \mathfrak{sl}_3 , $B^{1,1} \otimes B^{1,1}$ looks like:

$$2 \otimes 1 \xrightarrow{2} 3 \otimes 1 \xrightarrow{0} 1 \otimes 1 \xrightarrow{1} 1 \otimes 2 \xrightarrow{1} 2 \otimes 2 \xrightarrow{2} 2 \otimes 3 \xrightarrow{2} 3 \otimes 3,$$
$$\xrightarrow{1} 3 \otimes 2 \xrightarrow{2} 1 \otimes 3 \xrightarrow{1}$$

where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.

$$P_{-2\omega_2}(x;q,0) = x_1^2 + (q+1)x_1x_2 + x_2^2 + (q+1)x_1x_3 + (q+1)x_2x_3 + x_3^2$$

=

In \mathfrak{sl}_3 , $B^{1,1} \otimes B^{1,1}$ looks like:

$$2 \otimes 1 \xrightarrow{2} 3 \otimes 1 \xrightarrow{0} 1 \otimes 1 \xrightarrow{1} 1 \otimes 2 \xrightarrow{1} 2 \otimes 2 \xrightarrow{2} 2 \otimes 3 \xrightarrow{2} 3 \otimes 3,$$

$$\downarrow^{1} 3 \otimes 2 \xrightarrow{2} 1 \otimes 3 \xrightarrow{1}$$

where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.

$$P_{-2\omega_2}(x;q,0) = x_1^2 + (q+1)x_1x_2 + x_2^2 + (q+1)x_1x_3 + (q+1)x_2x_3 + x_3^2$$

= q(x_1x_2 + x_1x_3 + x_2x_3)

In \mathfrak{sl}_3 , $B^{1,1} \otimes B^{1,1}$ looks like:

$$2 \otimes 1 \xrightarrow{2} 3 \otimes 1 \xrightarrow{0} 1 \otimes 1 \xrightarrow{1} 1 \otimes 2 \xrightarrow{1} 2 \otimes 2 \xrightarrow{2} 2 \otimes 3 \xrightarrow{2} 3 \otimes 3,$$

$$\overset{1}{\searrow} 3 \otimes 2 \xrightarrow{2} 1 \otimes 3 \xrightarrow{7}$$

where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.

$$P_{-2\omega_2}(x;q,0) = x_1^2 + (q+1)x_1x_2 + x_2^2 + (q+1)x_1x_3 + (q+1)x_2x_3 + x_3^2$$

= q(x_1x_2 + x_1x_3 + x_2x_3)

In \mathfrak{sl}_3 , $B^{1,1} \otimes B^{1,1}$ looks like:

$$2 \otimes 1 \xrightarrow{2} 3 \otimes 1 \xrightarrow{0} 1 \otimes 1 \xrightarrow{1} 1 \otimes 2 \xrightarrow{1} 2 \otimes 2 \xrightarrow{2} 2 \otimes 3 \xrightarrow{2} 3 \otimes 3,$$

$$\overset{1}{\searrow} 3 \otimes 2 \xrightarrow{2} 1 \otimes 3 \xrightarrow{7}$$

where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.

$$P_{-2\omega_2}(x;q,0) = x_1^2 + (q+1)x_1x_2 + x_2^2 + (q+1)x_1x_3 + (q+1)x_2x_3 + x_3^2$$

= q(x_1x_2 + x_1x_3 + x_2x_3)
+

In \mathfrak{sl}_3 , $B^{1,1} \otimes B^{1,1}$ looks like:

$$2 \otimes 1 \xrightarrow{2} 3 \otimes 1 \xrightarrow{0} 1 \otimes 1 \xrightarrow{1} 1 \otimes 2 \xrightarrow{1} 2 \otimes 2 \xrightarrow{2} 2 \otimes 3 \xrightarrow{2} 3 \otimes 3,$$

$$\downarrow^{1} 3 \otimes 2 \xrightarrow{2} 1 \otimes 3 \xrightarrow{1}$$

where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.

$$P_{-2\omega_2}(x;q,0) = x_1^2 + (q+1)x_1x_2 + x_2^2 + (q+1)x_1x_3 + (q+1)x_2x_3 + x_3^2$$

= $q(x_1x_2 + x_1x_3 + x_2x_3)$
+ $x_1^2 + x_1x_2 + x_2^2 + x_1x_3 + x_2x_3 + x_3^2$

In \mathfrak{sl}_3 , $B^{1,1} \otimes B^{1,1}$ looks like:

$$2 \otimes 1 \xrightarrow{2} 3 \otimes 1 \xrightarrow{0} 1 \otimes 1 \xrightarrow{1} 1 \otimes 2 \xrightarrow{1} 2 \otimes 2 \xrightarrow{2} 2 \otimes 3 \xrightarrow{2} 3 \otimes 3,$$

$$\downarrow^{1} 3 \otimes 2 \xrightarrow{2} 1 \otimes 3 \xrightarrow{1}$$

where to simplify the diagram we also show the 0 arrows that survive in the corresponding Demazure crystal.

-

3

• Gerasimov, Lebedev, Oblezin showed that q-deformed \mathfrak{gl}_n -Whittaker functions are Macdonald polynomials specialized at t = 0.

- Gerasimov, Lebedev, Oblezin showed that q-deformed \mathfrak{gl}_n -Whittaker functions are Macdonald polynomials specialized at t = 0.
- So, by Sanderson and Ion, they can be expressed using Demazure characters.

- Gerasimov, Lebedev, Oblezin showed that q-deformed \mathfrak{gl}_n -Whittaker functions are Macdonald polynomials specialized at t = 0.
- So, by Sanderson and Ion, they can be expressed using Demazure characters.
- Hence, by our results they can be expressed in terms of KR crystals and the energy function.

Future directions

2

Peter Tingley (MIT)

ъ.

<ロト < 四ト < 三ト < 三ト

• Lenart recently showed that type $C_n^{(1)}$ Macdonlad polynomials (at t = 0) can be expressed as sums over tensor products of *KR*-crystals, where q counts energy.

• Lenart recently showed that type $C_n^{(1)}$ Macdonlad polynomials (at t = 0) can be expressed as sums over tensor products of *KR*-crystals, where q counts energy.

 $B^{1,1}\otimes B^{1,1}$

• Lenart recently showed that type $C_n^{(1)}$ Macdonlad polynomials (at t = 0) can be expressed as sums over tensor products of *KR*-crystals, where q counts energy.

 $B^{1,1}\otimes B^{1,1}$

• Lenart recently showed that type $C_n^{(1)}$ Macdonlad polynomials (at t = 0) can be expressed as sums over tensor products of *KR*-crystals, where q counts energy.

Peter Tingley (MIT)

14/14

$$B^{1,1}\otimes B^{1,1} \otimes b_{\Lambda_0}$$

• Lenart recently showed that type $C_n^{(1)}$ Macdonlad polynomials (at t = 0) can be expressed as sums over tensor products of *KR*-crystals, where q counts energy.

Peter Tingley (MIT)

14/14

$$B^{1,1}\otimes B^{1,1} \ \otimes \ b_{\Lambda_0}$$

• Lenart recently showed that type $C_n^{(1)}$ Macdonlad polynomials (at t = 0) can be expressed as sums over tensor products of *KR*-crystals, where q counts energy.

Peter Tingley (MIT)

14/14

$$B^{1,1}\otimes B^{1,1} \otimes b_{\Lambda_0}$$

• Lenart recently showed that type $C_n^{(1)}$ Macdonlad polynomials (at t = 0) can be expressed as sums over tensor products of *KR*-crystals, where q counts energy.

$$B^{1,1}\otimes B^{1,1}$$
 \otimes b_{Λ_0} $B_{s_1s_2s_1s_2s_0}(\Lambda_0)$

• Lenart recently showed that type $C_n^{(1)}$ Macdonlad polynomials (at t = 0) can be expressed as sums over tensor products of *KR*-crystals, where q counts energy.

$$B^{1,1}\otimes B^{1,1}$$
 \otimes b_{Λ_0} $B_{s_1s_2s_1s_2s_0}(\Lambda_0)$

• Lenart recently showed that type $C_n^{(1)}$ Macdonlad polynomials (at t = 0) can be expressed as sums over tensor products of *KR*-crystals, where q counts energy.

• Lenart recently showed that type $C_n^{(1)}$ Macdonlad polynomials (at t = 0) can be expressed as sums over tensor products of *KR*-crystals, where q counts energy.

$$B^{1,1} \otimes B^{1,1} \otimes b_{\Lambda_0} \qquad B_{s_1s_2s_1s_2s_0}(\Lambda_0) \qquad B_{s_2s_1s_2}(\Lambda_2)$$

$$= \begin{array}{c} \hline & \bullet & \bullet \\ & \bullet & \bullet & \bullet \\ & \bullet & \bullet & \bullet \\ \hline & \bullet & \bullet \\ \hline & \bullet & \bullet & \bullet \\ \hline & \bullet \\$$

• These tensor products seem to break up as unions of Demazure modules.

- These tensor products seem to break up as unions of Demazure modules.
- Via Lenart's results, this would give a formula for Macdonald polynomials as sums of Demazure Characters.

Peter Tingley (MIT)

Energy function