Crystal combinatorics from PBW bases¹

Peter Tingley with John Claxton, Ben Salisbury and Adam Schultze

Loyola University Chicago

International Conference on Groups, Rings, Group Rings and Hopf Algebras, in honor of Donald S. Passman Oct 2-4, 2015

3 Nice reduced expressions and bracketing crystal rules

Background

Background

< ロ > < 回 > < 回 > < 回 >

• \mathfrak{g} is a complex simple Lie algebra...usually \mathfrak{sl}_n or \mathfrak{so}_n .

- \mathfrak{g} is a complex simple Lie algebra...usually \mathfrak{sl}_n or \mathfrak{so}_n .
- E_i, F_i are the Chevalley generators

- \mathfrak{g} is a complex simple Lie algebra...usually \mathfrak{sl}_n or \mathfrak{so}_n .
- *E_i*, *F_i* are the Chevalley generators (for \mathfrak{sl}_n , matrices that are zero except for a 1 just above/below the diagonal).

- \mathfrak{g} is a complex simple Lie algebra...usually \mathfrak{sl}_n or \mathfrak{so}_n .
- E_i, F_i are the Chevalley generators (for \mathfrak{sl}_n , matrices that are zero except for a 1 just above/below the diagonal).
- $U_q(\mathfrak{g})$ is the corresponding quantized universal enveloping algebra.

- \mathfrak{g} is a complex simple Lie algebra...usually \mathfrak{sl}_n or \mathfrak{so}_n .
- E_i, F_i are the Chevalley generators (for \mathfrak{sl}_n , matrices that are zero except for a 1 just above/below the diagonal).
- $U_q(\mathfrak{g})$ is the corresponding quantized universal enveloping algebra.
- $U_q^-(\mathfrak{g})$ is the subalgebra generated by the F_i .

- \mathfrak{g} is a complex simple Lie algebra...usually \mathfrak{sl}_n or \mathfrak{so}_n .
- E_i, F_i are the Chevalley generators (for \mathfrak{sl}_n , matrices that are zero except for a 1 just above/below the diagonal).
- $U_q(\mathfrak{g})$ is the corresponding quantized universal enveloping algebra.
- $U_q^-(\mathfrak{g})$ is the subalgebra generated by the F_i .
- $B(\infty)$ is the crystal for $U_q^-(\mathfrak{g})$, which you should think of as enumerating a basis

- \mathfrak{g} is a complex simple Lie algebra...usually \mathfrak{sl}_n or \mathfrak{so}_n .
- E_i, F_i are the Chevalley generators (for \mathfrak{sl}_n , matrices that are zero except for a 1 just above/below the diagonal).
- $U_q(\mathfrak{g})$ is the corresponding quantized universal enveloping algebra.
- $U_q^-(\mathfrak{g})$ is the subalgebra generated by the F_i .
- B(∞) is the crystal for U⁻_q(𝔅), which you should think of as enumerating a basis...although don't worry about this because one point of this talk is to discuss a way to construct/define B(∞) in finite type.

PBW bases and crystal bases

Peter Tingley (Loyola Chicago)

• The roots of a Lie algebra **g** are the non-zero weight spaces of **g** acting on itself (these define a set of vector closed under reflection; a root system).

- The roots of a Lie algebra **g** are the non-zero weight spaces of **g** acting on itself (these define a set of vector closed under reflection; a root system).
- For each reduced expression $w_0 = s_{i_1}s_{i_2}\cdots s_{i_N}$, Lusztig defines an order

$$\alpha_{i_1} = \beta_1 < \beta_2 < \ldots < \beta_N$$

on positive roots, and elements F_{β_j} in $U_q^-(\mathbf{g})_{\beta_j}$.

- The roots of a Lie algebra **g** are the non-zero weight spaces of **g** acting on itself (these define a set of vector closed under reflection; a root system).
- For each reduced expression $w_0 = s_{i_1}s_{i_2}\cdots s_{i_N}$, Lusztig defines an order

$$\alpha_{i_1} = \beta_1 < \beta_2 < \ldots < \beta_N$$

on positive roots, and elements F_{β_i} in $U_q^-(\mathbf{g})_{\beta_i}$.

• $\{F_{\beta_1}^{(n_1)}\cdots F_{\beta_N}^{(n_N)}\}$ is a bases of $U_q^-(\mathbf{g})$ (a PBW basis).

- The roots of a Lie algebra **g** are the non-zero weight spaces of **g** acting on itself (these define a set of vector closed under reflection; a root system).
- For each reduced expression $w_0 = s_{i_1}s_{i_2}\cdots s_{i_N}$, Lusztig defines an order

$$\alpha_{i_1} = \beta_1 < \beta_2 < \ldots < \beta_N$$

on positive roots, and elements F_{β_i} in $U_q^-(\mathbf{g})_{\beta_i}$.

- $\{F_{\beta_1}^{(n_1)}\cdots F_{\beta_N}^{(n_N)}\}$ is a bases of $U_q^-(\mathbf{g})$ (a PBW basis).
- There is one such basis B_i for each expression **i** of w_0 .

Relationship between different PBW bases

Relationship between different PBW bases

Theorem (Lusztig)

Let $\mathcal{L} = span_{\mathbb{Z}[q]} \mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}} + q\mathcal{L}$.

Relationship between different PBW bases

Theorem (Lusztig)

Let $\mathcal{L} = span_{\mathbb{Z}[q]} \mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}} + q\mathcal{L}$.

Relationship between different PBW bases

Theorem (Lusztig)

Let $\mathcal{L} = span_{\mathbb{Z}[q]}\mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}} + q\mathcal{L}$.

Proof.

• You can get between any two reduced expressions by a series of braid moves.

Relationship between different PBW bases

Theorem (Lusztig)

Let $\mathcal{L} = span_{\mathbb{Z}[q]}\mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}} + q\mathcal{L}$.

- You can get between any two reduced expressions by a series of braid moves.
- Two terms braid moves don't change the basis at all.

Theorem (Lusztig)

Let $\mathcal{L} = span_{\mathbb{Z}[q]}\mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}} + q\mathcal{L}$.

- You can get between any two reduced expressions by a series of braid moves.
- Two terms braid moves don't change the basis at all.
- Three term braid moves change three consecutive factors by

Theorem (Lusztig)

Let $\mathcal{L} = span_{\mathbb{Z}[q]}\mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}} + q\mathcal{L}$.

- You can get between any two reduced expressions by a series of braid moves.
- Two terms braid moves don't change the basis at all.
- Three term braid moves change three consecutive factors by

•
$$F^{\mathbf{i}'}_{\beta_k} = F^{\mathbf{i}}_{\beta_{k+2}}$$

Theorem (Lusztig)

Let $\mathcal{L} = span_{\mathbb{Z}[q]}\mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}} + q\mathcal{L}$.

- You can get between any two reduced expressions by a series of braid moves.
- Two terms braid moves don't change the basis at all.
- Three term braid moves change three consecutive factors by

•
$$F_{\beta_k}^{\mathbf{i}'} = F_{\beta_{k+2}}^{\mathbf{i}}$$

• $F_{\beta_{k+2}}^{\mathbf{i}'} = F_{\beta_k}^{\mathbf{i}}$

Theorem (Lusztig)

Let $\mathcal{L} = span_{\mathbb{Z}[q]}\mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}} + q\mathcal{L}$.

- You can get between any two reduced expressions by a series of braid moves.
- Two terms braid moves don't change the basis at all.
- Three term braid moves change three consecutive factors by

•
$$F_{\beta_k}^{\mathbf{i}'} = F_{\beta_{k+2}}^{\mathbf{i}}$$

• $F_{\beta_{k+2}}^{\mathbf{i}'} = F_{\beta_k}^{\mathbf{i}}$
• $F_{\beta_{k+1}}^{\mathbf{i}} = F_{k+2}^{\mathbf{i}}F_k^{\mathbf{i}} - qF_k^{\mathbf{i}}F_{k+2}^{\mathbf{i}}$ and $F_{\beta_{k+1}}^{\mathbf{i}'} = F_{k+2}^{\mathbf{i}'}F_k^{\mathbf{i}'} - qF_k^{\mathbf{i}'}F_{k+2}^{\mathbf{i}}$.

Theorem (Lusztig)

Let $\mathcal{L} = span_{\mathbb{Z}[q]} \mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}} + q\mathcal{L}$.

Proof.

- You can get between any two reduced expressions by a series of braid moves.
- Two terms braid moves don't change the basis at all.
- Three term braid moves change three consecutive factors by

•
$$F_{\beta_k}^{\mathbf{i}'} = F_{\beta_{k+2}}^{\mathbf{i}}$$

• $F_{\beta_{k+2}}^{\mathbf{i}'} = F_{\beta_k}^{\mathbf{i}}$
• $F_{\beta_{k+1}}^{\mathbf{i}} = F_{k+2}^{\mathbf{i}}F_k^{\mathbf{i}} - qF_k^{\mathbf{i}}F_{k+2}^{\mathbf{i}}$ and $F_{\beta_{k+1}}^{\mathbf{i}'} = F_{k+2}^{\mathbf{i}'}F_k^{\mathbf{i}'} - qF_k^{\mathbf{i}'}F_{k+2}^{\mathbf{i}}$.

• Can do some (pretty annoying but "elementary") linear algebra to show $\operatorname{span}_{\mathbb{Z}[q]} \{ F_{\mathbf{i}\beta_{k}}^{(a)} F_{\mathbf{i}\beta_{k+1}}^{(b)} F_{\mathbf{i}\beta_{k+2}}^{(c)} \} = \operatorname{span}_{\mathbb{Z}[q]} \{ F_{\mathbf{i}'\beta_{k}}^{(a)} F_{\mathbf{i}'\beta_{k+1}}^{(b)} F_{\mathbf{i}'\beta_{k+2}}^{(c)} \}. \quad \Box$

Relating the two bases for \mathfrak{sl}_3

Relating the two bases for \mathfrak{sl}_3

Relating the two bases for \mathfrak{sl}_3

• One finds that, e.g.,

$$(F^{\mathbf{i}_1}_{\alpha_2})^{(1)}(F^{\mathbf{i}_1}_{\alpha_1+\alpha_2})^{(2)}(F^{\mathbf{i}_1}_{\alpha_1})^{(3)} = (F^{\mathbf{i}_2}_{\alpha_1})^{(4)}(F^{\mathbf{i}_2}_{\alpha_1+\alpha_2})^{(1)}(F^{\mathbf{i}_2}_{\alpha_2})^{(2)} \mod q.$$

Relating the two bases for \mathfrak{sl}_3

• One finds that, e.g.,

$$(F^{\mathbf{i}_1}_{\alpha_2})^{(1)}(F^{\mathbf{i}_1}_{\alpha_1+\alpha_2})^{(2)}(F^{\mathbf{i}_1}_{\alpha_1})^{(3)} = (F^{\mathbf{i}_2}_{\alpha_1})^{(4)}(F^{\mathbf{i}_2}_{\alpha_1+\alpha_2})^{(1)}(F^{\mathbf{i}_2}_{\alpha_2})^{(2)} \mod q.$$

Relating the two bases for \mathfrak{sl}_3

• One finds that, e.g.,

$$(F^{\mathbf{i}_1}_{\alpha_2})^{(1)}(F^{\mathbf{i}_1}_{\alpha_1+\alpha_2})^{(2)}(F^{\mathbf{i}_1}_{\alpha_1})^{(3)} = (F^{\mathbf{i}_2}_{\alpha_1})^{(4)}(F^{\mathbf{i}_2}_{\alpha_1+\alpha_2})^{(1)}(F^{\mathbf{i}_2}_{\alpha_2})^{(2)} \mod q.$$

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

$$i_1 := s_1 s_2 s_1$$
 and $i_2 := s_2 s_1 s_2$.

• One finds that, e.g.,

$$(F_{\alpha_2}^{\mathbf{i}_1})^{(1)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_1})^{(2)}(F_{\alpha_1}^{\mathbf{i}_1})^{(3)} = (F_{\alpha_1}^{\mathbf{i}_2})^{(4)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_2})^{(1)}(F_{\alpha_2}^{\mathbf{i}_2})^{(2)} \mod q.$$

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

 $i_1 := s_1 s_2 s_1$ and $i_2 := s_2 s_1 s_2$.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

 $i_1 := s_1 s_2 s_1$ and $i_2 := s_2 s_1 s_2$.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

 $i_1 := s_1 s_2 s_1$ and $i_2 := s_2 s_1 s_2$.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

 $i_1 := s_1 s_2 s_1$ and $i_2 := s_2 s_1 s_2$.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

 $i_1 := s_1 s_2 s_1$ and $i_2 := s_2 s_1 s_2$.

• One finds that, e.g.,

$$(F^{\mathbf{i}_1}_{\alpha_2})^{(1)}(F^{\mathbf{i}_1}_{\alpha_1+\alpha_2})^{(2)}(F^{\mathbf{i}_1}_{\alpha_1})^{(3)} = (F^{\mathbf{i}_2}_{\alpha_1})^{(4)}(F^{\mathbf{i}_2}_{\alpha_1+\alpha_2})^{(1)}(F^{\mathbf{i}_2}_{\alpha_2})^{(2)} \mod q.$$
Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

• One finds that, e.g.,

$$(F_{\alpha_2}^{\mathbf{i}_1})^{(1)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_1})^{(2)}(F_{\alpha_1}^{\mathbf{i}_1})^{(3)} = (F_{\alpha_1}^{\mathbf{i}_2})^{(4)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_2})^{(1)}(F_{\alpha_2}^{\mathbf{i}_2})^{(2)} \mod q.$$

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

 $i_1 := s_1 s_2 s_1$ and $i_2 := s_2 s_1 s_2$.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

 $i_1 := s_1 s_2 s_1$ and $i_2 := s_2 s_1 s_2$.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

 $i_1 := s_1 s_2 s_1$ and $i_2 := s_2 s_1 s_2$.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

 $i_1 := s_1 s_2 s_1$ and $i_2 := s_2 s_1 s_2$.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

 $i_1 := s_1 s_2 s_1$ and $i_2 := s_2 s_1 s_2$.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

• One finds that, e.g.,

$$(F^{\mathbf{i}_1}_{\alpha_2})^{(1)}(F^{\mathbf{i}_1}_{\alpha_1+\alpha_2})^{(2)}(F^{\mathbf{i}_1}_{\alpha_1})^{(3)} = (F^{\mathbf{i}_2}_{\alpha_1})^{(4)}(F^{\mathbf{i}_2}_{\alpha_1+\alpha_2})^{(1)}(F^{\mathbf{i}_2}_{\alpha_2})^{(2)} \mod q.$$

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

 $i_1 := s_1 s_2 s_1$ and $i_2 := s_2 s_1 s_2$.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

 $i_1 := s_1 s_2 s_1$ and $i_2 := s_2 s_1 s_2$.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

- One finds that, e.g., $(F_{\alpha_{2}}^{\mathbf{i}_{1}})^{(1)}(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}})^{(2)}(F_{\alpha_{1}}^{\mathbf{i}_{1}})^{(3)} = (F_{\alpha_{1}}^{\mathbf{i}_{2}})^{(4)}(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}})^{(1)}(F_{\alpha_{2}}^{\mathbf{i}_{2}})^{(2)}$ $\mod q$.
- Can easily classify the polygons that show up this way.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

- One finds that, e.g., $(F_{\alpha_2}^{\mathbf{i}_1})^{(1)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_1})^{(2)}(F_{\alpha_1}^{\mathbf{i}_1})^{(3)} = (F_{\alpha_1}^{\mathbf{i}_2})^{(4)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_2})^{(1)}(F_{\alpha_2}^{\mathbf{i}_2})^{(2)} \mod q.$
- Can easily classify the polygons that show up this way.
- *F*₁ acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way mod *q*.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

- One finds that, e.g., $(F_{\alpha_2}^{\mathbf{i}_1})^{(1)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_1})^{(2)}(F_{\alpha_1}^{\mathbf{i}_1})^{(3)} = (F_{\alpha_1}^{\mathbf{i}_2})^{(4)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_2})^{(1)}(F_{\alpha_2}^{\mathbf{i}_2})^{(2)} \mod q.$
- Can easily classify the polygons that show up this way.
- *F*₁ acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way mod *q*.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

- One finds that, e.g., $(F_{\alpha_2}^{\mathbf{i}_1})^{(1)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_1})^{(2)}(F_{\alpha_1}^{\mathbf{i}_1})^{(3)} = (F_{\alpha_1}^{\mathbf{i}_2})^{(4)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_2})^{(1)}(F_{\alpha_2}^{\mathbf{i}_2})^{(2)} \mod q.$
- Can easily classify the polygons that show up this way.
- *F*₁ acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way mod *q*.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

- One finds that, e.g., $(F_{\alpha_2}^{\mathbf{i}_1})^{(1)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_1})^{(2)}(F_{\alpha_1}^{\mathbf{i}_1})^{(3)} = (F_{\alpha_1}^{\mathbf{i}_2})^{(4)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_2})^{(1)}(F_{\alpha_2}^{\mathbf{i}_2})^{(2)} \mod q.$
- Can easily classify the polygons that show up this way.
- *F*₁ acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way mod *q*.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

- One finds that, e.g., $(F_{\alpha_2}^{\mathbf{i}_1})^{(1)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_1})^{(2)}(F_{\alpha_1}^{\mathbf{i}_1})^{(3)} = (F_{\alpha_1}^{\mathbf{i}_2})^{(4)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_2})^{(1)}(F_{\alpha_2}^{\mathbf{i}_2})^{(2)} \mod q.$
- Can easily classify the polygons that show up this way.
- *F*₁ acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way mod *q*.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

- One finds that, e.g., $(F_{\alpha_2}^{\mathbf{i}_1})^{(1)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_1})^{(2)}(F_{\alpha_1}^{\mathbf{i}_1})^{(3)} = (F_{\alpha_1}^{\mathbf{i}_2})^{(4)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_2})^{(1)}(F_{\alpha_2}^{\mathbf{i}_2})^{(2)} \mod q.$
- Can easily classify the polygons that show up this way.
- *F*₁ acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way mod *q*.
- The complicated action is captured by a bracketing rule.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

- One finds that, e.g., $(F_{\alpha_2}^{\mathbf{i}_1})^{(1)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_1})^{(2)}(F_{\alpha_1}^{\mathbf{i}_1})^{(3)} = (F_{\alpha_1}^{\mathbf{i}_2})^{(4)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_2})^{(1)}(F_{\alpha_2}^{\mathbf{i}_2})^{(2)} \mod q.$
- Can easily classify the polygons that show up this way.
- *F*₁ acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way mod *q*.
- The complicated action is captured by a bracketing rule.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

- One finds that, e.g., $(F_{\alpha_2}^{\mathbf{i}_1})^{(1)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_1})^{(2)}(F_{\alpha_1}^{\mathbf{i}_1})^{(3)} = (F_{\alpha_1}^{\mathbf{i}_2})^{(4)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_2})^{(1)}(F_{\alpha_2}^{\mathbf{i}_2})^{(2)} \mod q.$
- Can easily classify the polygons that show up this way.
- *F*₁ acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way mod *q*.
- The complicated action is captured by a bracketing rule.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

- One finds that, e.g., $(F_{\alpha_2}^{\mathbf{i}_1})^{(1)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_1})^{(2)}(F_{\alpha_1}^{\mathbf{i}_1})^{(3)} = (F_{\alpha_1}^{\mathbf{i}_2})^{(4)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_2})^{(1)}(F_{\alpha_2}^{\mathbf{i}_2})^{(2)} \mod q.$
- Can easily classify the polygons that show up this way.
- *F*₁ acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way mod *q*.
- The complicated action is captured by a bracketing rule.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

- One finds that, e.g., $(F_{\alpha_2}^{\mathbf{i}_1})^{(1)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_1})^{(2)}(F_{\alpha_1}^{\mathbf{i}_1})^{(3)} = (F_{\alpha_1}^{\mathbf{i}_2})^{(4)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_2})^{(1)}(F_{\alpha_2}^{\mathbf{i}_2})^{(2)} \mod q.$
- Can easily classify the polygons that show up this way.
- *F*₁ acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way mod *q*.
- The complicated action is captured by a bracketing rule.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

- One finds that, e.g., $(F_{\alpha_2}^{\mathbf{i}_1})^{(1)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_1})^{(2)}(F_{\alpha_1}^{\mathbf{i}_1})^{(3)} = (F_{\alpha_1}^{\mathbf{i}_2})^{(4)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_2})^{(1)}(F_{\alpha_2}^{\mathbf{i}_2})^{(2)} \mod q.$
- Can easily classify the polygons that show up this way.
- *F*₁ acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way mod *q*.
- The complicated action is captured by a bracketing rule.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

- One finds that, e.g., $(F_{\alpha_2}^{\mathbf{i}_1})^{(1)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_1})^{(2)}(F_{\alpha_1}^{\mathbf{i}_1})^{(3)} = (F_{\alpha_1}^{\mathbf{i}_2})^{(4)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_2})^{(1)}(F_{\alpha_2}^{\mathbf{i}_2})^{(2)} \mod q.$
- Can easily classify the polygons that show up this way.
- *F*₁ acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way mod *q*.
- The complicated action is captured by a bracketing rule.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

- One finds that, e.g., $(F_{\alpha_2}^{\mathbf{i}_1})^{(1)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_1})^{(2)}(F_{\alpha_1}^{\mathbf{i}_1})^{(3)} = (F_{\alpha_1}^{\mathbf{i}_2})^{(4)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_2})^{(1)}(F_{\alpha_2}^{\mathbf{i}_2})^{(2)} \mod q.$
- Can easily classify the polygons that show up this way.
- *F*₁ acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way mod *q*.
- The complicated action is captured by a bracketing rule.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

- One finds that, e.g., $(F_{\alpha_2}^{\mathbf{i}_1})^{(1)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_1})^{(2)}(F_{\alpha_1}^{\mathbf{i}_1})^{(3)} = (F_{\alpha_1}^{\mathbf{i}_2})^{(4)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_2})^{(1)}(F_{\alpha_2}^{\mathbf{i}_2})^{(2)} \mod q.$
- Can easily classify the polygons that show up this way.
- *F*₁ acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way mod *q*.
- The complicated action is captured by a bracketing rule.

Relating the two bases for \mathfrak{sl}_3

• In this case there are exactly two reduced expressions for w_0 :

- One finds that, e.g., $(F_{\alpha_2}^{\mathbf{i}_1})^{(1)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_1})^{(2)}(F_{\alpha_1}^{\mathbf{i}_1})^{(3)} = (F_{\alpha_1}^{\mathbf{i}_2})^{(4)}(F_{\alpha_1+\alpha_2}^{\mathbf{i}_2})^{(1)}(F_{\alpha_2}^{\mathbf{i}_2})^{(2)} \mod q.$
- Can easily classify the polygons that show up this way.
- *F*₁ acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way mod *q*.
- The complicated action is captured by a bracketing rule.
- Gives an alternate definition of $B(\infty)$ and Kashiwara's crystal operators.

Calculating crystal operators using braid moves: sl₄

 s_1 s_2 s_3 s_1 s_2 s_1

s_1	<i>s</i> ₂	\$3	s_1	<i>s</i> ₂	s_1
α_1	$(\alpha_1 + \alpha_2)$	$(\alpha_1 + \alpha_2 + \alpha_3)$	α_2	$(\alpha_2 + \alpha_3)$	α_3

<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	s_1	<i>s</i> ₂	s_1
α_1	$(\alpha_1 + \alpha_2)$	$(\alpha_1 + \alpha_2 + \alpha_3)$	α_2	$(\alpha_2 + \alpha_3)$	α_3
e.g. $F_1^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{2}^{(3)}$	$F_{23}^{(3)}$	$F_{3}^{(2)}$

	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₁	<i>s</i> ₂	s_1
	α_1	$(\alpha_1 + \alpha_2)$	$(\alpha_1 + \alpha_2 + \alpha_3)$	α_2	$(\alpha_2 + \alpha_3)$	α_3
e.g.	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{2}^{(3)}$	$F_{23}^{(3)}$	$F_{3}^{(2)}$
$f_3:$						

	s_1	<i>s</i> ₂	<i>s</i> ₃	s_1	<i>s</i> ₂	s_1
	α_1	$(\alpha_1 + \alpha_2)$	$(\alpha_1 + \alpha_2 + \alpha_3)$	α_2	$(\alpha_2 + \alpha_3)$	α_3
e.g.	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{2}^{(3)}$	$F_{23}^{(3)}$	$F_{3}^{(2)}$
$f_3:$	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{3}^{(3)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$

	s_1	<i>s</i> ₂	<i>s</i> ₃	s_1	<i>s</i> ₂	s_1
	α_1	$(\alpha_1 + \alpha_2)$	$(\alpha_1 + \alpha_2 + \alpha_3)$	α_2	$(\alpha_2 + \alpha_3)$	α_3
e.g.	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{2}^{(3)}$	$F_{23}^{(3)}$	$F_{3}^{(2)}$
$f_3:$	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{3}^{(3)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{1}^{(2)}$	$F_{3}^{(1)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$

	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	s_1	<i>s</i> ₂	s_1
	α_1	$(\alpha_1 + \alpha_2)$	$(\alpha_1 + \alpha_2 + \alpha_3)$	α_2	$(\alpha_2 + \alpha_3)$	α_3
e.g.	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{2}^{(3)}$	$F_{23}^{(3)}$	$F_{3}^{(2)}$
f_3 :	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{3}^{(3)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{1}^{(2)}$	$F_{3}^{(1)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{3}^{(1)}$	$F_1^{(2)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$

Peter Tingley (Loyola Chicago)

	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₁	<i>s</i> ₂	s_1
	α_1	$(\alpha_1 + \alpha_2)$	$(\alpha_1 + \alpha_2 + \alpha_3)$	α_2	$(\alpha_2 + \alpha_3)$	α_3
e.g.	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{2}^{(3)}$	$F_{23}^{(3)}$	$F_{3}^{(2)}$
$f_3:$	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{3}^{(3)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{1}^{(2)}$	$F_{3}^{(1)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{3}^{(1)}$	$F_1^{(2)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{3}^{(2)}$	$F_1^{(2)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$

	s_1	<i>s</i> ₂	<i>s</i> ₃	s_1	<i>s</i> ₂	s_1
	α_1	$(\alpha_1 + \alpha_2)$	$(\alpha_1+\alpha_2+\alpha_3)$	α_2	$(\alpha_2 + \alpha_3)$	α_3
e.g.	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{2}^{(3)}$	$F_{23}^{(3)}$	$F_{3}^{(2)}$
$f_3:$	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{3}^{(3)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{1}^{(2)}$	$F_{3}^{(1)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{3}^{(1)}$	$F_1^{(2)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{3}^{(2)}$	$F_1^{(2)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{3}^{(4)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$

	s_1	<i>s</i> ₂	<i>s</i> ₃	s_1	<i>s</i> ₂	s_1
	α_1	$(\alpha_1 + \alpha_2)$	$(\alpha_1 + \alpha_2 + \alpha_3)$	α_2	$(\alpha_2 + \alpha_3)$	α_3
e.g.	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{2}^{(3)}$	$F_{23}^{(3)}$	$F_{3}^{(2)}$
$f_3:$	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{3}^{(3)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{1}^{(2)}$	$F_{3}^{(1)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{3}^{(1)}$	$F_1^{(2)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{3}^{(2)}$	$F_1^{(2)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{3}^{(4)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{2}^{(2)}$	$F_{23}^{(4)}$	$F_{3}^{(2)}$
Calculating crystal operators using braid moves: sl₄

	s_1	<i>s</i> ₂	<i>s</i> ₃	s_1	<i>s</i> ₂	s_1
	α_1	$(\alpha_1 + \alpha_2)$	$(\alpha_1 + \alpha_2 + \alpha_3)$	α_2	$(\alpha_2 + \alpha_3)$	α_3
e.g.	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{2}^{(3)}$	$F_{23}^{(3)}$	$F_{3}^{(2)}$
$f_3:$	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{3}^{(3)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{1}^{(2)}$	$F_{3}^{(1)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{3}^{(1)}$	$F_1^{(2)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{3}^{(2)}$	$F_1^{(2)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{3}^{(4)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{2}^{(2)}$	$F_{23}^{(4)}$	$F_{3}^{(2)}$

$$F_1^{(2)}$$
 $F_{12}^{(3)}$ $F_{123}^{(1)}$ $F_2^{(3)}$ $F_{23}^{(3)}$ $F_3^{(2)}$

$$F_{1}^{(2)} F_{12}^{(3)} F_{123}^{(1)} F_{2}^{(3)} F_{23}^{(3)} F_{3}^{(2)}$$

$$1 1 \frac{2}{1} \frac{2}{1} \frac{2}{1} \frac{3}{2} \frac{3}{1} 2 2 2 \frac{3}{2} \frac{3}{2} \frac{3}{2} 3 3$$

Calculating braid moves using segments/Kostant partitions

$$F_{1}^{(2)} F_{12}^{(3)} F_{123}^{(1)} F_{2}^{(3)} F_{23}^{(3)} F_{3}^{(2)}$$

$$1 \quad 1 \quad \frac{2}{1} \quad \frac{2}{1} \quad \frac{2}{1} \quad \frac{3}{2} \quad \frac{3}{2}$$

• Gives a bracketing rule as long as each α_i can be moved to the front with all 3-term moves involving α_i .

J

Calculating braid moves using segments/Kostant partitions

$$F_{1}^{(2)} F_{12}^{(3)} F_{123}^{(1)} F_{2}^{(3)} F_{23}^{(3)} F_{3}^{(2)}$$

$$1 \quad 1 \quad \frac{2}{1} \quad \frac{2}{1} \quad \frac{2}{1} \quad \frac{3}{2} \quad \frac{3}{2}$$

• Gives a bracketing rule as long as each α_i can be moved to the front with all 3-term moves involving α_i . There is a reduced expression with this property in all types except E_8

Peter Tingley (Loyola Chicago)

Calculating braid moves using segments/Kostant partitions

$$F_{1}^{(2)} \quad F_{12}^{(3)} \quad F_{123}^{(1)} \quad F_{2}^{(3)} \quad F_{23}^{(3)} \quad F_{3}^{(2)}$$

$$1 \quad 1 \quad \frac{2}{1} \quad \frac{2}{1} \quad \frac{2}{1} \quad \frac{3}{2} \quad \frac{3}{2}$$

• Gives a bracketing rule as long as each α_i can be moved to the front with all 3-term moves involving α_i . There is a reduced expression with this property in all types except E_8 (and F_4).

Peter Tingley (Loyola Chicago)

PBW crystal

Calculating crystal operators using braid moves: type D_4

 s_1 s_2 s_3 s_4 s_2 s_1 s_2 s_3 s_4 s_2 s_3 s_4

Calculating crystal operators using braid moves: type D_4

Peter Tingley (Loyola Chicago)

$$F_{1}^{(2)} \quad F_{2}^{(1)} \quad F_{3}^{(4)} \quad F_{4}^{(2)} \quad F_{34}^{(1)} \quad F_{2}^{(3)} \quad F_{2}^{(3)} \quad F_{4}^{(1)} \quad F_{3}^{(2)} \quad F_{34}^{(1)} \quad F_{3}^{(2)} \quad F_{4}^{(2)} \quad F_{34}^{(2)} \quad F_{4}^{(2)} \quad F_{4}^{(2)}$$

$$F_{1}^{(2)} \quad F_{2}^{(1)} \quad F_{3}^{(4)} \quad F_{4}^{(2)} \quad F_{34}^{(1)} \quad F_{2}^{(3)} \quad F_{2}^{(3)} \quad F_{4}^{(1)} \quad F_{3}^{(2)} \quad F_{34}^{(1)} \quad F_{3}^{(2)} \quad F_{4}^{(1)} \quad F_{34}^{(2)} \quad F_{34}^{(2)} \quad F_{34}^{(2)} \quad F_{34}^{(2)} \quad F_{4}^{(2)} \quad F_{4}^{(2)} \quad F_{34}^{(2)} \quad F_{34}^{(2)} \quad F_{4}^{(2)} \quad F_{4}^{(2)} \quad F_{34}^{(2)} \quad F_{34}^{(2)} \quad F_{4}^{(2)} \quad F_{4}^{(2)} \quad F_{34}^{(2)} \quad F_{34$$

.f3

$$F_{1}^{(2)} \quad F_{2}^{(1)} \quad F_{3}^{(4)} \quad F_{4}^{(2)} \quad F_{34}^{(1)} \quad F_{2}^{(3)} \quad F_{2}^{(3)} \quad F_{4}^{(1)} \quad F_{3}^{(2)} \quad F_{34}^{(1)} \quad F_{3}^{(2)} \quad F_{4}^{(1)} \quad F_{34}^{(2)} \quad F_{34}^{(2)} \quad F_{34}^{(2)} \quad F_{34}^{(2)} \quad F_{34}^{(2)} \quad F_{4}^{(2)} \quad F_{34}^{(2)} \quad$$

.f3

Peter Tingley (Loyola Chicago)

Peter Tingley (Loyola Chicago)

$$F_{1}^{(2)} \quad F_{2}^{(1)} \quad F_{3}^{(4)} \quad F_{4}^{(2)} \quad F_{34}^{(1)} \quad F_{2}^{(3)} \quad F_{2}^{(3)} \quad F_{2}^{(3)} \quad F_{4}^{(1)} \quad F_{3}^{(2)} \quad F_{34}^{(1)} \quad F_{3}^{(2)} \quad F_{4}^{(1)} \quad F_{34}^{(2)} \quad F_{34}^{(1)} \quad F_{34}^{(2)} \quad F_{4}^{(2)} \quad F_{34}^{(1)} \quad F_{34}^{(2)} \quad F_{4}^{(2)} \quad F_{34}^{(1)} \quad F_{34}^{(2)} \quad F_{34}^{(2)} \quad F_{4}^{(2)} \quad F_{34}^{(2)} \quad F_{34}^{(2)} \quad F_{4}^{(2)} \quad F_{34}^{(2)} \quad F_{3$$

$$F_{1}^{(2)} \quad F_{2}^{(1)} \quad F_{3}^{(4)} \quad F_{4}^{(2)} \quad F_{34}^{(1)} \quad F_{2}^{(3)} \quad F_{2}^{(3)} \quad F_{2}^{(3)} \quad F_{4}^{(1)} \quad F_{3}^{(2)} \quad F_{34}^{(1)} \quad F_{3}^{(2)} \quad F_{4}^{(1)} \quad F_{34}^{(2)} \quad F_{34}^{(1)} \quad F_{34}^{(2)} \quad F_{4}^{(2)} \quad F_{34}^{(1)} \quad F_{34}^{(2)} \quad F_{4}^{(2)} \quad F_{34}^{(1)} \quad F_{34}^{(2)} \quad F_{34}^{(2)} \quad F_{4}^{(2)} \quad F_{34}^{(2)} \quad F_{34}^{(2)} \quad F_{4}^{(2)} \quad F_{34}^{(2)} \quad F_{3$$

Peter Tingley (Loyola Chicago)
Nice reduced expressions and bracketing crystal rules

Some citation information

• The construction of crystals using PBW bases is all due to Lusztig.

- The construction of crystals using PBW bases is all due to Lusztig.
- The relation between the PBW basis for the nice reduced expression and multi-segments in type A is basically known, but hard to find; in the form, it recently appeared in "Young Tableaux, Multisegments, and PBW Bases" with John Claxton (Seminaire Lotharingien de Combinatoire), but with a different proof.

- The construction of crystals using PBW bases is all due to Lusztig.
- The relation between the PBW basis for the nice reduced expression and multi-segments in type A is basically known, but hard to find; in the form, it recently appeared in "Young Tableaux, Multisegments, and PBW Bases" with John Claxton (Seminaire Lotharingien de Combinatoire), but with a different proof.
- So I think the combinatorial crystal rule in type D_n is new; it will show up on the arxiv soon in a paper with Ben Salisbury and Adam Schultze. We can also explain how it relates to other combinatorics in that type, but the relationship is not obvious.

- The construction of crystals using PBW bases is all due to Lusztig.
- The relation between the PBW basis for the nice reduced expression and multi-segments in type A is basically known, but hard to find; in the form, it recently appeared in "Young Tableaux, Multisegments, and PBW Bases" with John Claxton (Seminaire Lotharingien de Combinatoire), but with a different proof.
- So I think the combinatorial crystal rule in type D_n is new; it will show up on the arxiv soon in a paper with Ben Salisbury and Adam Schultze. We can also explain how it relates to other combinatorics in that type, but the relationship is not obvious.
- The reduced expressions we need were all given by Littelmann in his paper "Cones, crystals and patterns," for kind of similar reasons. But his definition looks a little stronger than what we need, so we don't currently have a proof that our construction probably doesn't work in E_8 .

Thanks!!!!!!