Crystal combinatorics from PBW bases ${ }^{1}$

Peter Tingley

with John Claxton, Ben Salisbury and Adam Schultze

Loyola University Chicago
International Conference on Groups, Rings, Group Rings and Hopf Algebras, in honor of Donald S. Passman Oct 2-4, 2015

[^0]
Outline

(1) Background
(2) PBW bases and crystal bases
(3) Nice reduced expressions and bracketing crystal rules

Background

Background

- \mathfrak{g} is a complex simple Lie algebra...usually $\mathfrak{s l}_{n}$ or $\mathfrak{s o}_{n}$.

Background

- \mathfrak{g} is a complex simple Lie algebra...usually $\mathfrak{s l}_{n}$ or $\mathfrak{s o}_{n}$.
- E_{i}, F_{i} are the Chevalley generators

Background

- \mathfrak{g} is a complex simple Lie algebra...usually $\mathfrak{s l}_{n}$ or $\mathfrak{s o}_{n}$.
- E_{i}, F_{i} are the Chevalley generators (for $\mathfrak{s l}_{n}$, matrices that are zero except for a 1 just above/below the diagonal).

Background

- \mathfrak{g} is a complex simple Lie algebra...usually $\mathfrak{s l}_{n}$ or $\mathfrak{s o}_{n}$.
- E_{i}, F_{i} are the Chevalley generators (for $\mathfrak{s l}_{n}$, matrices that are zero except for a 1 just above/below the diagonal).
- $U_{q}(\mathfrak{g})$ is the corresponding quantized universal enveloping algebra.

Background

- \mathfrak{g} is a complex simple Lie algebra...usually $\mathfrak{s l}_{n}$ or $\mathfrak{s o}_{n}$.
- E_{i}, F_{i} are the Chevalley generators (for $\mathfrak{s l}_{n}$, matrices that are zero except for a 1 just above/below the diagonal).
- $U_{q}(\mathfrak{g})$ is the corresponding quantized universal enveloping algebra.
- $U_{q}^{-}(\mathfrak{g})$ is the subalgebra generated by the F_{i}.

Background

- \mathfrak{g} is a complex simple Lie algebra...usually $\mathfrak{s l}_{n}$ or $\mathfrak{s o}_{n}$.
- E_{i}, F_{i} are the Chevalley generators (for $\mathfrak{s l}_{n}$, matrices that are zero except for a 1 just above/below the diagonal).
- $U_{q}(\mathfrak{g})$ is the corresponding quantized universal enveloping algebra.
- $U_{q}^{-}(\mathfrak{g})$ is the subalgebra generated by the F_{i}.
- $B(\infty)$ is the crystal for $U_{q}^{-}(\mathfrak{g})$, which you should think of as enumerating a basis

Background

- \mathfrak{g} is a complex simple Lie algebra...usually $\mathfrak{s l}_{n}$ or $\mathfrak{s o}_{n}$.
- E_{i}, F_{i} are the Chevalley generators (for $\mathfrak{s l}_{n}$, matrices that are zero except for a 1 just above/below the diagonal).
- $U_{q}(\mathfrak{g})$ is the corresponding quantized universal enveloping algebra.
- $U_{q}^{-}(\mathfrak{g})$ is the subalgebra generated by the F_{i}.
- $B(\infty)$ is the crystal for $U_{q}^{-}(\mathfrak{g})$, which you should think of as enumerating a basis...although don't worry about this because one point of this talk is to discuss a way to construct/define $B(\infty)$ in finite type.

PBW bases and crystal bases

PBW bases and crystal bases

- The roots of a Lie algebra \mathbf{g} are the non-zero weight spaces of \mathbf{g} acting on itself (these define a set of vector closed under reflection; a root system).

PBW bases and crystal bases

- The roots of a Lie algebra \mathbf{g} are the non-zero weight spaces of \mathbf{g} acting on itself (these define a set of vector closed under reflection; a root system).
- For each reduced expression $w_{0}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{N}}$, Lusztig defines an order

$$
\alpha_{i_{1}}=\beta_{1}<\beta_{2}<\ldots<\beta_{N}
$$

on positive roots, and elements $F_{\beta_{j}}$ in $U_{q}^{-}(\mathbf{g})_{\beta_{j}}$.

PBW bases and crystal bases

- The roots of a Lie algebra \mathbf{g} are the non-zero weight spaces of \mathbf{g} acting on itself (these define a set of vector closed under reflection; a root system).
- For each reduced expression $w_{0}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{N}}$, Lusztig defines an order

$$
\alpha_{i_{1}}=\beta_{1}<\beta_{2}<\ldots<\beta_{N}
$$

on positive roots, and elements $F_{\beta_{j}}$ in $U_{q}^{-}(\mathbf{g})_{\beta_{j}}$.

- $\left\{F_{\beta_{1}}^{\left(n_{1}\right)} \cdots F_{\beta_{N}}^{\left(n_{N}\right)}\right\}$ is a bases of $U_{q}^{-}(\mathbf{g})$ (a PBW basis).

PBW bases and crystal bases

- The roots of a Lie algebra \mathbf{g} are the non-zero weight spaces of \mathbf{g} acting on itself (these define a set of vector closed under reflection; a root system).
- For each reduced expression $w_{0}=s_{i_{1}} s_{i_{2}} \cdots s_{i_{N}}$, Lusztig defines an order

$$
\alpha_{i_{1}}=\beta_{1}<\beta_{2}<\ldots<\beta_{N}
$$

on positive roots, and elements $F_{\beta_{j}}$ in $U_{q}^{-}(\mathbf{g})_{\beta_{j}}$.

- $\left\{F_{\beta_{1}}^{\left(n_{1}\right)} \cdots F_{\beta_{N}}^{\left(n_{N}\right)}\right\}$ is a bases of $U_{q}^{-}(\mathbf{g})$ (a PBW basis).
- There is one such basis $B_{\mathbf{i}}$ for each expression \mathbf{i} of w_{0}.

Relationship between different PBW bases

Relationship between different PBW bases

Theorem (Lusztig)
Let $\mathcal{L}=\operatorname{span}_{\mathbb{Z}[q]} \mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}}+q \mathcal{L}$.

Relationship between different PBW bases

Theorem (Lusztig)

Let $\mathcal{L}=\operatorname{span}_{\mathbb{Z}[q]} \mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}}+q \mathcal{L}$.

Proof.

Relationship between different PBW bases

Theorem (Lusztig)

Let $\mathcal{L}=\operatorname{span}_{\mathbb{Z}[q]} \mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}}+q \mathcal{L}$.

Proof.

- You can get between any two reduced expressions by a series of braid moves.

Relationship between different PBW bases

Theorem (Lusztig)

Let $\mathcal{L}=\operatorname{span}_{\mathbb{Z}[q]} \mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}}+q \mathcal{L}$.

Proof.

- You can get between any two reduced expressions by a series of braid moves.
- Two terms braid moves don't change the basis at all.

Relationship between different PBW bases

Theorem (Lusztig)

Let $\mathcal{L}=\operatorname{span}_{\mathbb{Z}[q]} \mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}}+q \mathcal{L}$.

Proof.

- You can get between any two reduced expressions by a series of braid moves.
- Two terms braid moves don't change the basis at all.
- Three term braid moves change three consecutive factors by

Relationship between different PBW bases

Theorem (Lusztig)

Let $\mathcal{L}=\operatorname{span}_{\mathbb{Z}[q]} \mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}}+q \mathcal{L}$.

Proof.

- You can get between any two reduced expressions by a series of braid moves.
- Two terms braid moves don't change the basis at all.
- Three term braid moves change three consecutive factors by
- $F_{\beta_{k}}^{i^{\prime}}=F_{\beta_{k+2}}^{\mathrm{i}}$

Relationship between different PBW bases

Theorem (Lusztig)

Let $\mathcal{L}=\operatorname{span}_{\mathbb{Z}[q]} \mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}}+q \mathcal{L}$.

Proof.

- You can get between any two reduced expressions by a series of braid moves.
- Two terms braid moves don't change the basis at all.
- Three term braid moves change three consecutive factors by
- $F_{\beta_{k}}^{\mathrm{i}^{\prime}}=F_{\beta_{k+2}}^{\mathrm{i}}$
- $F_{\beta_{k+2}}^{i^{\prime}}=F_{\beta_{k}}^{\mathrm{i}}$

Relationship between different PBW bases

Theorem (Lusztig)

Let $\mathcal{L}=\operatorname{span}_{\mathbb{Z}[q]} \mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}}+q \mathcal{L}$.

Proof.

- You can get between any two reduced expressions by a series of braid moves.
- Two terms braid moves don't change the basis at all.
- Three term braid moves change three consecutive factors by
- $F_{\beta_{k}}^{\mathrm{i}^{\mathrm{i}}}=F_{\beta_{k+2}}^{\mathrm{i}}$
- $F_{\beta_{k+2}}^{i^{\prime}}=F_{\beta_{k}}^{\mathbf{i}}$
- $F_{\beta_{k+1}}^{\mathrm{i}}=F_{k+2}^{\mathrm{i}} F_{k}^{\mathrm{i}}-q F_{k}^{\mathrm{i}} F_{k+2}^{\mathrm{i}}$ and $F_{\beta_{k+1}}^{\mathrm{i}^{\prime}}=F_{k+2}^{\mathrm{i}} F_{k}^{\mathrm{i}}-q F_{k}^{\mathrm{i}} F_{k+2}^{\mathrm{i}}$.

Relationship between different PBW bases

Theorem (Lusztig)

Let $\mathcal{L}=\operatorname{span}_{\mathbb{Z}[q]} \mathbf{B}_{\mathbf{i}}$. Then \mathcal{L} does not depend on \mathbf{i} and neither does $B_{\mathbf{i}}+q \mathcal{L}$.

Proof.

- You can get between any two reduced expressions by a series of braid moves.
- Two terms braid moves don't change the basis at all.
- Three term braid moves change three consecutive factors by

$$
\begin{aligned}
& \text { - } F_{\beta_{k}}^{\mathrm{i}^{\prime}}=F_{\beta_{k+2}}^{\mathrm{i}} \\
& \text { - } F_{\beta_{k+2}^{\prime}}^{\mathrm{i}^{2}}=F_{\beta_{k}}^{\mathrm{i}} \\
& \text { - } F_{\beta_{k+1}}^{\mathrm{i}}=F_{k+2}^{\mathrm{i}} F_{k}^{\mathrm{i}}-q F_{k}^{\mathrm{i}} F_{k+2}^{\mathrm{i}} \text { and } F_{\beta_{k+1}}^{\mathrm{i}^{\prime}}=F_{k+2}^{\mathrm{i}^{\prime}} F_{k}^{\mathrm{i}^{\prime}}-q F_{k}^{\mathrm{i}^{\prime}} F_{k+2}^{\mathrm{i}} .
\end{aligned}
$$

- Can do some (pretty annoying but "elementary") linear algebra to show

$$
\operatorname{span}_{\mathbb{Z}[q]}\left\{F_{\mathbf{i} \beta_{k}}^{(a)} F_{\mathbf{i} \beta_{k+1}}^{(b)} F_{\mathbf{i} \beta_{k+2}}^{(c)}\right\}=\operatorname{span}_{\mathbb{Z}[q]}\left\{F_{\mathbf{i}^{\prime} \beta_{k}}^{(a)} F_{\mathbf{i}^{\prime} \beta_{k+1}}^{(b)} F_{\mathbf{i}^{\prime} \beta_{k+2}}^{(c)}\right\} .
$$

Relating the two bases for $\mathfrak{s l}_{3}$

Relating the two bases for $\mathfrak{S l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} : $\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad$ and $\quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2}$.

Relating the two bases for sl_{3}

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \bmod q .
$$

Relating the two bases for $\mathfrak{S l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

Relating the two bases for $\mathfrak{S l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

Relating the two bases for $\mathfrak{S l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

Relating the two bases for $\mathfrak{S l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

Relating the two bases for $\mathfrak{S l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

Relating the two bases for $\mathfrak{S l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

Relating the two bases for $\mathfrak{S l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

Relating the two bases for $\mathfrak{S l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

Relating the two bases for $\mathfrak{S l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

Relating the two bases for $\mathfrak{S l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

Relating the two bases for $\mathfrak{S l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

Relating the two bases for $\mathfrak{S l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

Relating the two bases for $\mathfrak{S l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

Relating the two bases for $\mathfrak{S l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

Relating the two bases for $\mathfrak{S l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

Relating the two bases for $\mathfrak{S l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

Relating the two bases for $\mathfrak{s l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

Relating the two bases for $\mathfrak{s l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

- Can easily classify the polygons that show up this way.

Relating the two bases for $\mathfrak{s l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2}
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

- Can easily classify the polygons that show up this way.
- F_{1} acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way $\bmod q$.

Relating the two bases for $\mathfrak{s l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2}
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

- Can easily classify the polygons that show up this way.
- F_{1} acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way $\bmod q$.

Relating the two bases for $\mathfrak{s l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2}
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

- Can easily classify the polygons that show up this way.
- F_{1} acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way $\bmod q$.

Relating the two bases for $\mathfrak{s l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

- Can easily classify the polygons that show up this way.
- F_{1} acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way $\bmod q$.

Relating the two bases for $\mathfrak{s l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2}
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

- Can easily classify the polygons that show up this way.
- F_{1} acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way $\bmod q$.

Relating the two bases for $\mathfrak{s l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2}
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

- Can easily classify the polygons that show up this way.
- F_{1} acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way $\bmod q$.
- The complicated action is captured by a bracketing rule.

Relating the two bases for $\mathfrak{s l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2}
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

- Can easily classify the polygons that show up this way.
- F_{1} acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way $\bmod q$.
- The complicated action is captured by a bracketing rule.

Relating the two bases for $\mathfrak{s l}_{3}$

)()))

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2}
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

- Can easily classify the polygons that show up this way.
- F_{1} acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way $\bmod q$.
- The complicated action is captured by a bracketing rule.

Relating the two bases for $\mathfrak{s l}_{3}$

)(0)))

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2}
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

- Can easily classify the polygons that show up this way.
- F_{1} acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way $\bmod q$.
- The complicated action is captured by a bracketing rule.

Relating the two bases for $\mathfrak{s l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2}
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

- Can easily classify the polygons that show up this way.
- F_{1} acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way $\bmod q$.
- The complicated action is captured by a bracketing rule.

Relating the two bases for $\mathfrak{s l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2}
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

- Can easily classify the polygons that show up this way.
- F_{1} acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way $\bmod q$.
- The complicated action is captured by a bracketing rule.

Relating the two bases for $\mathfrak{s l}_{3}$

)((())

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2} .
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

- Can easily classify the polygons that show up this way.
- F_{1} acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way $\bmod q$.
- The complicated action is captured by a bracketing rule.

Relating the two bases for $\mathfrak{s l}_{3}$

$$
)((())
$$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2}
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

- Can easily classify the polygons that show up this way.
- F_{1} acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way $\bmod q$.
- The complicated action is captured by a bracketing rule.

Relating the two bases for $\mathfrak{s l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2}
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

- Can easily classify the polygons that show up this way.
- F_{1} acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way $\bmod q$.
- The complicated action is captured by a bracketing rule.

Relating the two bases for $\mathfrak{s l}_{3}$

- In this case there are exactly two reduced expressions for w_{0} :

$$
\mathbf{i}_{1}:=s_{1} s_{2} s_{1} \quad \text { and } \quad \mathbf{i}_{2}:=s_{2} s_{1} s_{2}
$$

- One finds that, e.g.,

$$
\left(F_{\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(1)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{1}}\right)^{(2)}\left(F_{\alpha_{1}}^{\mathbf{i}_{1}}\right)^{(3)}=\left(F_{\alpha_{1}}^{\mathbf{i}_{2}}\right)^{(4)}\left(F_{\alpha_{1}+\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(1)}\left(F_{\alpha_{2}}^{\mathbf{i}_{2}}\right)^{(2)} \quad \bmod q .
$$

- Can easily classify the polygons that show up this way.
- F_{1} acts simply on one monomial, and in a more complicated way on the other...but still in a well defined way $\bmod q$.
- The complicated action is captured by a bracketing rule.
- Gives an alternate definition of $B(\infty)$ and Kashiwara's crystal operators.

Calculating crystal operators using braid moves: $\mathfrak{s l}_{4}$

Calculating crystal operators using braid moves: $\mathfrak{s l}_{4}$

s_{1}
S_{2}
S_{3}
S_{1}
S_{2}
S_{1}

Calculating crystal operators using braid moves: $\mathfrak{s l}_{4}$

\boldsymbol{s}_{1}	\boldsymbol{S}_{2}	\boldsymbol{S}_{3}	\boldsymbol{s}_{1}	\boldsymbol{S}_{2}	\boldsymbol{S}_{1}
α_{1}	$\left(\alpha_{1}+\alpha_{2}\right)$	$\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)$	α_{2}	$\left(\alpha_{2}+\alpha_{3}\right)$	α_{3}

Calculating crystal operators using braid moves: $\mathfrak{s l}_{4}$

$$
\left.\begin{array}{cccccc}
& s_{1} & s_{2} & s_{3} & s_{1} & s_{2} \\
& \alpha_{1} & \left(\alpha_{1}+\alpha_{2}\right) & \left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) & \alpha_{2} & \left(\alpha_{2}+\alpha_{3}\right)
\end{array} \alpha_{3}\right)
$$

Calculating crystal operators using braid moves: $\mathfrak{s l}_{4}$

	s_{1}	s_{2}	s_{3}	s_{1}	s_{2}
	α_{1}	$\left(\alpha_{1}+\alpha_{2}\right)$	$\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)$	α_{2}	s_{1}
e.g.	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{2}^{(3)}$	$F_{23}^{(3)}$

Calculating crystal operators using braid moves: $\mathfrak{s l}_{4}$

	s_{1}	s_{2}	s_{3}	s_{1}	s_{2}
	α_{1}	$\left(\alpha_{1}+\alpha_{2}\right)$	$\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)$	α_{2}	$\left(\alpha_{2}+\alpha_{3}\right)$

Calculating crystal operators using braid moves: $\mathfrak{s l}_{4}$

	s_{1}	s_{2}	s_{3}	s_{1}	s_{2}
e.g.	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{2}^{(3)}$	$F_{23}^{(3)}$
$f_{3}:$	$F_{1}^{(2)}$	$F_{12}(3)$	$F_{123}^{(1)}$	$F_{3}^{(3)}$	$F_{32}^{(2)}$
	$F_{1}^{(2)}$	$F_{3}^{(1)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$
		$\left.\alpha_{1}+\alpha_{2}+\alpha_{3}\right)$	$\alpha_{2}^{(4)}$	$\left(\alpha_{2}+\alpha_{3}\right)$	α_{3}
			$F_{2}^{(4)}$		

Calculating crystal operators using braid moves: $\mathfrak{s l}_{4}$

s_{1}	s_{2}	s_{3}	s_{1}	s_{2}	s_{1}
e.g.	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{2}^{(3)}$	$F_{23}^{(3)}$
$f_{3}:$	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{3}^{(3)}$	$F_{32}^{(2)}$
	$F_{1}^{(2)}$	$F_{3}^{(1)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$
	$F_{3}^{(1)}$	$F_{1}^{(2)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$
			$\left.\alpha_{2}+\alpha_{3}\right)$	$F_{2}^{(4)}$	
				$\alpha_{2}^{(4)}$	

Calculating crystal operators using braid moves: $\mathfrak{s l}_{4}$

$$
\left.\begin{array}{rccccc}
& s_{1} & s_{2} & s_{3} & s_{1} & s_{2} \\
& \alpha_{1} & \left(\alpha_{1}+\alpha_{2}\right) & \left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right) & \alpha_{2} & \left(\alpha_{2}+\alpha_{3}\right)
\end{array} \alpha_{3}\right)
$$

Calculating crystal operators using braid moves: $\mathfrak{s l}_{4}$

s_{1}	s_{2}	s_{3}	s_{1}	s_{2}	s_{1}
α_{1}	$\left(\alpha_{1}+\alpha_{2}\right)$	$\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)$	α_{2}	$\left(\alpha_{2}+\alpha_{3}\right)$	α_{3}
$f_{3}:$	$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{3}^{(3)}$	$F_{32}^{(2)}$
$F_{1}^{(2)}$	$F_{3}^{(1)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
$F_{3}^{(1)}$	$F_{1}^{(2)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
$F_{3}^{(2)}$	$F_{1}^{(2)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{3}^{(4)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$

Calculating crystal operators using braid moves: $\mathfrak{s l}_{4}$

s_{1}	s_{2}	s_{3}	s_{1}	s_{2}	s_{1}
α_{1}	$\left(\alpha_{1}+\alpha_{2}\right)$	$\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)$	α_{2}	$\left(\alpha_{2}+\alpha_{3}\right)$	α_{3}
$f_{3}: F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{3}^{(3)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
$F_{1}^{(2)}$	$F_{3}^{(1)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
$F_{3}^{(1)}$	$F_{1}^{(2)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
$F_{3}^{(2)}$	$F_{1}^{(2)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{3}^{(4)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{2}^{(2)}$	$F_{23}^{(4)}$	$F_{3}^{(2)}$

Calculating crystal operators using braid moves: $\mathfrak{s l}_{4}$

s_{1}	s_{2}	s_{3}	s_{1}	s_{2}	s_{1}
α_{1}	$\left(\alpha_{1}+\alpha_{2}\right)$	$\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)$	α_{2}	$\left(\alpha_{2}+\alpha_{3}\right)$	α_{3}
$f_{3}: F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{3}^{(3)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
$F_{1}^{(2)}$	$F_{3}^{(1)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
$F_{3}^{(1)}$	$F_{1}^{(2)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
$F_{3}^{(2)}$	$F_{1}^{(2)}$	$F_{312}^{(3)}$	$F_{12}^{(1)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{3}^{(4)}$	$F_{32}^{(2)}$	$F_{2}^{(4)}$
$F_{1}^{(2)}$	$F_{12}^{(3)}$	$F_{123}^{(1)}$	$F_{2}^{(2)}$	$F_{23}^{(4)}$	$F_{3}^{(2)}$

Calculating braid moves using segments/Kostant partitions

Calculating braid moves using segments/Kostant partitions

$$
F_{1}^{(2)} \quad F_{12}^{(3)} \quad F_{123}^{(1)} \quad F_{2}^{(3)} \quad F_{23}^{(3)} \quad F_{3}^{(2)}
$$

Calculating braid moves using segments/Kostant partitions

$$
\begin{aligned}
& F_{1}^{(2)} \quad F_{12}{ }^{(3)} \quad F_{123}^{(1)} \quad F_{2}^{(3)} \quad F_{23}^{(3)} \quad F_{3}^{(2)} \\
& \begin{array}{l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & \frac{2}{1} & \frac{2}{1} & \frac{2}{1} & \frac{3}{2} & & & \\
1 & & 1 & 2 & 2 & 2 & \frac{3}{2} & \frac{3}{2} & \frac{3}{2} & 3 & 3 \\
\hline
\end{array}
\end{aligned}
$$

Calculating braid moves using segments/Kostant partitions

$$
\begin{aligned}
& F_{1}^{(2)} \quad F_{12}{ }^{(3)} \quad F_{123}^{(1)} \quad F_{2}^{(3)} \quad F_{23}^{(3)} \quad F_{3}^{(2)}
\end{aligned}
$$

Calculating braid moves using segments/Kostant partitions

$$
\begin{aligned}
& F_{1}^{(2)} \quad F_{12}{ }^{(3)} \quad F_{123}^{(1)} \quad F_{2}^{(3)} \quad F_{23}^{(3)} \quad F_{3}^{(2)}
\end{aligned}
$$

f_{3}

Calculating braid moves using segments/Kostant partitions

$$
\begin{aligned}
& F_{1}^{(2)} \quad F_{12}{ }^{(3)} \quad F_{123}^{(1)} \quad F_{2}^{(3)} \quad F_{23}^{(3)} \quad F_{3}^{(2)}
\end{aligned}
$$

Calculating braid moves using segments/Kostant partitions

$$
\begin{aligned}
& F_{1}^{(2)} \quad F_{12}{ }^{(3)} \quad F_{123}^{(1)} \quad F_{2}^{(3)} \quad F_{23}^{(3)} \quad F_{3}^{(2)}
\end{aligned}
$$

Calculating braid moves using segments/Kostant partitions

$$
\begin{aligned}
& F_{1}^{(2)} \quad F_{12}{ }^{(3)} \quad F_{123}^{(1)} \quad F_{2}^{(3)} \quad F_{23}^{(3)} \quad F_{3}^{(2)}
\end{aligned}
$$

Calculating braid moves using segments/Kostant partitions

$$
\begin{aligned}
& F_{1}^{(2)} \quad F_{12}{ }^{(3)} \quad F_{123}^{(1)} \quad F_{2}^{(3)} \quad F_{23}^{(3)} \quad F_{3}^{(2)}
\end{aligned}
$$

$$
\begin{aligned}
& \left.f_{3}\right)\left(\begin{array}{l}
(1)
\end{array}\right) \quad\left(\begin{array}{l}
(1)
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{1}^{(2)} F_{12}{ }^{(3)} \quad F_{123}^{(1)} \quad F_{2}^{(2)} \quad F_{23}^{(4)} \quad F_{3}^{(2)}
\end{aligned}
$$

Calculating braid moves using segments/Kostant partitions

$$
\begin{aligned}
& F_{1}^{(2)} \quad F_{12}{ }^{(3)} \quad F_{123}^{(1)} \quad F_{2}^{(3)} \quad F_{23}^{(3)} \quad F_{3}^{(2)}
\end{aligned}
$$

$$
\begin{aligned}
& \left.f_{3}\right)\left(\begin{array}{l}
(1)
\end{array}\right) \quad\left(\begin{array}{l}
(1)
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{1}^{(2)} F_{12}{ }^{(3)} \quad F_{123}^{(1)} \quad F_{2}^{(2)} \quad F_{23}^{(4)} \quad F_{3}^{(2)}
\end{aligned}
$$

Calculating braid moves using segments/Kostant partitions

$$
\begin{aligned}
& F_{1}^{(2)} \quad F_{12}{ }^{(3)} \quad F_{123}^{(1)} \quad F_{2}^{(3)} \quad F_{23}^{(3)} \quad F_{3}^{(2)}
\end{aligned}
$$

$F_{1}^{(2)}$
$F_{12}{ }^{(3)}$
$F_{123}^{(1)}$
$F_{2}^{(2)}$
$F_{23}^{(4)}$
$F_{3}^{(2)}$

- Gives a bracketing rule as long as each α_{i} can be moved to the front with all 3-term moves involving α_{i}.

Calculating braid moves using segments/Kostant partitions

$$
\begin{aligned}
& F_{1}^{(2)} \quad F_{12}{ }^{(3)} \quad F_{123}^{(1)} \quad F_{2}^{(3)} \quad F_{23}^{(3)} \quad F_{3}^{(2)}
\end{aligned}
$$

$F_{1}^{(2)}$
$F_{12}{ }^{(3)}$
$F_{123}^{(1)}$
$F_{2}^{(2)}$
$F_{23}^{(4)}$
$F_{3}^{(2)}$

- Gives a bracketing rule as long as each α_{i} can be moved to the front with all 3-term moves involving α_{i}. There is a reduced expression with this property in all types except E_{8}

Calculating braid moves using segments/Kostant partitions

$$
\begin{aligned}
& F_{1}^{(2)} \quad F_{12}{ }^{(3)} \quad F_{123}^{(1)} \quad F_{2}^{(3)} \quad F_{23}^{(3)} \quad F_{3}^{(2)}
\end{aligned}
$$

$F_{1}^{(2)}$
$F_{12}{ }^{(3)}$
$F_{123}^{(1)}$
$F_{2}^{(2)}$
$F_{23}^{(4)}$
$F_{3}^{(2)}$

- Gives a bracketing rule as long as each α_{i} can be moved to the front with all 3-term moves involving α_{i}. There is a reduced expression with this property in all types except E_{8} (and F_{4}).

Calculating crystal operators using braid moves: type D_{4}

Calculating crystal operators using braid moves: type D_{4}

$$
\begin{array}{cccccccccccc}
s_{1} & S_{2} & S_{3} & S_{4} & S_{2} & s_{1} & S_{2} & S_{3} & S_{4} & S_{2} & S_{3} & s_{4}
\end{array}
$$

Calculating crystal operators using braid moves: type D_{4}

$$
\begin{array}{cccccccccccc}
s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{3} & s_{4} \\
& & & & & & & & & & & \\
& & & & & 24 & 2 & & & & & \\
1 & 2 & 2 & 4 & 34 & 34 & 2 & 4 & 3 & 34 & 3 & 4 \\
& 1 & 1 & 1 & 1 & 2 & 1 & & 2 & 2 & 2 & \\
\hline
\end{array}
$$

Calculating crystal operators using braid moves: type D_{4}

$$
\begin{array}{cccccccccccc}
s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{3} & s_{4} \\
& & & & & & & & & & & \\
& & & & & 2 & & & & & & \\
1 & 2 & 3 & 4 & 34 & 34 & 2 & 4 & 3 & 34 & 3 & 4 \\
& 1 & 2 & 2 & 2 & 3 & 2 & 2 & 2 & 2 & 3 & 4 \\
& & 4 & 1 & 1 & 2 & & 1 & & & & \\
& & 2 & 3 & & & & & & & 4 & 3 \\
& & 1 & 1 & & & & & & & &
\end{array}
$$

Calculating crystal operators using braid moves: type D_{4}

$$
\begin{array}{cccccccccccc}
s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{3} & s_{4} \\
& & & & & & & & & & & \\
& & 3 & 4 & 34 & 2 & & & & & & \\
1 & 2 & 2 & 2 & 2 & 34 & 2 & 4 & 3 & 34 & 3 & 4 \\
& 1 & 1 & 1 & 1 & 2 & & 2 & 2 & 2 & & \\
& & 4 & 3 & & 1 & & & & & & \\
& & 2 & 2 & & & & & & & 4 & 3 \\
& & 1 & 1 & & & & & & 3 & 34 & 3 \\
& & & & & & & & 4 & 2 & 2 &
\end{array}
$$

Calculating crystal operators using braid moves: type D_{4}

$$
\begin{array}{cccccccccccc}
s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{3} & s_{4} \\
& & & & & & & & & & & \\
& & & & & 34 & 2 & & & & & \\
1 & 2 & 2 & 2 & 2 & 34 & 2 & 4 & 3 & 34 & 3 & 4 \\
& 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & & \\
& & 4 & 3 & & 1 & & & & & 4 & 3 \\
& & 2 & 2 & & & & & & & 4 & 3 \\
& & 1 & 1 & & & & & 4 & 34 & 3 & \\
& & & & & & & & 4 & 2 & 2 & \\
& & & & & & 4 & 4 & 2 & & &
\end{array}
$$

Calculating crystal operators using braid moves: type D_{4}

$$
\begin{array}{cccccccccccc}
s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{3} & s_{4} \\
& & & & & & & & & & & \\
& & 3 & 4 & 34 & 2 & & & & & & \\
1 & 1 & 2 & 2 & 2 & 34 & 2 & 4 & 3 & 34 & 3 & 4 \\
& 1 & 1 & 1 & 1 & 2 & 1 & & 2 & 2 & 2 & \\
& & 4 & 3 & & & & & & & & \\
& & 2 & 2 & & & & & & & 4 & 3 \\
& & 1 & 1 & & & & & 4 & 34 & 3 & \\
& & & & & & 4 & 4 & 2 & 2 & 2 & \\
& & & & & & 4 & 2 & & & & \\
& & & & & & 4 & 34 & & & & \\
& & & & & & 2 & & & & & \\
& & & & & & 1 & & & & &
\end{array}
$$

Calculating crystal operators using braid moves: type D_{4}

$$
\begin{array}{cccccccccccc}
s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{3} & s_{4} \\
& & & & & & & & & & & \\
& & & & 4 & 34 & 2 & & & & & \\
1 & 2 & 2 & 2 & 2 & 34 & 2 & 4 & 3 & 34 & 3 & 4 \\
& 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 & & \\
& & 4 & 3 & & 1 & & & & & & \\
& & 2 & 2 & & & & & & & 4 & 3 \\
& & 1 & 1 & & & & & 4 & 34 & 3 & \\
& & & & & & & & 4 & 2 & 2 & \\
& & & & & & 4 & 4 & 2 & & & \\
& & & & & & 2 & 2 & & & & \\
& & & & & 4 & 34 & & & & & \\
& & & & 34 & 3 & 1 & & & & & \\
& & & 4 & 2 & 2 & & & & & & \\
& & & & 1 & 1 & & & & & &
\end{array}
$$

Calculating crystal operators using braid moves: type D_{4}

$$
\begin{aligned}
& \begin{array}{llllllllllll}
s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{3} & s_{4}
\end{array} \\
& \begin{array}{llllcccccccc}
& & 2 & 3 & 4 & 34 & 2 & & & \\
& 1 & 2 & 2 & 2 & 34 & 2 & 4 & 3 & 34 & 3 & 4 \\
& 1 & 1 & 1 & 1 & 2 & 1 & & 2 & 2 & 2 & \\
& & 4 & 3 & & 1 & & & & & &
\end{array} \\
& \begin{array}{llll}
4 & 3 & 4 & 3 \\
2 & 2 & 1
\end{array} \\
& \begin{array}{lll}
4 & 34 & 3 \\
2 & 2
\end{array} \\
& \begin{array}{ll}
4 & 4 \\
2
\end{array} \\
& \begin{array}{cc}
& 2 \\
4 & 34 \\
& 2 \\
& 1
\end{array} \\
& \begin{array}{ccc}
& 34 & 3 \\
4 & 2 & 2 \\
& 1 & 1
\end{array} \\
& 4 \begin{array}{lll}
4 & 2 \\
& 2 & 1 \\
& 1 & 1
\end{array}
\end{aligned}
$$

Calculating crystal operators using braid moves: type D_{4}

```
\(\begin{array}{llllllllllll}s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{3} & s_{4}\end{array}\)
\(\begin{array}{cccccccccccc} & & 2 & 3 & 4 & 34 & 2 & & & & \\ & 1 & 2 & 2 & 2 & 34 & 2 & 4 & 3 & 34 & 3 & 4 \\ & & 1 & 1 & 1 & 2 & 1 & & 2 & 2 & 2 & \\ & & 4 & 3 & & 1 & & & & & & \\ & & 2 & 2 & & & & & & & 4 & 3\end{array}\)
```



```
\(\begin{array}{rrr}4 & 4 \\ 2 \\ 1 & 1\end{array}\)
41
```


Calculating crystal operators using braid moves: type D_{4}

```
\(\begin{array}{llllllllllll}s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{1} & s_{2} & s_{3} & s_{4} & s_{2} & s_{3} & s_{4}\end{array}\)
\(\begin{array}{cccccccccccc} & & & 3 & 4 & 34 & 2 & & & & \\ & 1 & 2 & 2 & 2 & 34 & 2 & 4 & 3 & 34 & 3 & 4 \\ & & 1 & 1 & 1 & 2 & & 2 & 2 & 2 & & \\ & & 4 & 3 & & 1 & & & & & & \\ & & 2 & 2 & & & & & & & 4 & 3\end{array}\)
```


Calculating crystal operators using type D Kostant partition

Calculating crystal operators using type D Kostant partition

$$
\begin{array}{cccccccccccc}
F_{1}^{(2)} & F_{2}^{(1)} & F_{3}^{(4)} & F_{4}^{(2)} & F_{34}^{(1)} & F_{2}^{(3)} & F_{2}^{(3)} & F_{4}^{(1)} & F_{3}^{(2)} & F_{34}^{(1)} & F_{3}^{(2)} & F_{4}^{(0)} \\
& 1 & 2 & 2 & 2 & 34 & & 2 & 2 & 2 & & \\
& 1 & 1 & 1 & 2 & & & & & &
\end{array}
$$

Calculating crystal operators using type D Kostant partition

$$
\begin{array}{cccccccccccc}
F_{1}^{(2)} & F_{2}^{(1)} & F_{3}^{(4)} & F_{4}^{(2)} & F_{34}^{(1)} & F_{2}^{(3)} & F_{2}^{(3)} & F_{4}^{(1)} & F_{3}^{(2)} & F_{34}^{(1)} & F_{3}^{(2)} & F_{4}^{(0)} \\
& 1 & 2 & 2 & 2 & 34 & & 2 & 2 & 2 & & \\
& 1 & 1 & 1 & 2 & & & & & &
\end{array}
$$

$$
\left.\begin{array}{lllllllllcccccccccccccc}
& & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 34 & 2 & 2 & 2 & & & & & & & 34 & 34 & 34 & 2
\end{array}\right)
$$

Calculating crystal operators using type D Kostant partition

$$
\begin{array}{cccccccccccc}
F_{1}^{(2)} & F_{2}^{(1)} & F_{3}^{(4)} & F_{4}^{(2)} & F_{34}^{(1)} & F_{2}^{(3)} & F_{2}^{(3)} & F_{4}^{(1)} & F_{3}^{(2)} & F_{34}^{(1)} & F_{3}^{(2)} & F_{4}^{(0)} \\
& 1 & 2 & 2 & 2 & 34 & & 2 & 2 & 2 & & \\
& 1 & 1 & 1 & 2 & & & & & &
\end{array}
$$

f_{3}

Calculating crystal operators using type D Kostant partition

$$
\begin{array}{cccccccccccc}
F_{1}^{(2)} & F_{2}^{(1)} & F_{3}^{(4)} & F_{4}^{(2)} & F_{34}^{(1)} & F_{2}^{(3)} & F_{2}^{(3)} & F_{4}^{(1)} & F_{3}^{(2)} & F_{34}^{(1)} & F_{3}^{(2)} & F_{4}^{(0)} \\
& 1 & 2 & 2 & 2 & 34 & & 2 & 2 & 2 & & \\
& 1 & 1 & 1 & 2 & & & & & &
\end{array}
$$

$$
\left.\begin{array}{lllllllllcccccccccccccc}
& & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 34 & 2 & 2 & 2 & & & & & & 3 & 2 & 3 & 3 & 3
\end{array}\right)
$$

$$
f_{3}
$$

Calculating crystal operators using type D Kostant partition

$$
\begin{array}{cccccccccccc}
F_{1}^{(2)} & F_{2}^{(1)} & F_{3}^{(4)} & F_{4}^{(2)} & F_{34}^{(1)} & F_{2}^{(3)} & F_{2}^{(3)} & F_{4}^{(1)} & F_{3}^{(2)} & F_{34}^{(1)} & F_{3}^{(2)} & F_{4}^{(0)} \\
& 1 & 2 & 2 & 2 & 34 & & 2 & 2 & 2 & & \\
& 1 & 1 & 1 & 2 & & & & & &
\end{array}
$$

$$
\left.\begin{array}{llllllllllcccccccccccc}
& & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 34 & 2 & 2 & 2 & & & & & & 24 & 3 & 2 & 3
\end{array}\right)
$$

$\begin{array}{llllllclllllllllll}f_{3} & 3 & 3 & 3 & 3 & & 34 & 4 & 4 & 3 & 3 & & & & 34 & 4 & & \\ & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 3\end{array}$

Calculating crystal operators using type D Kostant partition

$$
\begin{aligned}
& \begin{array}{cccccccccccc}
F_{1}^{(2)} & F_{2}^{(1)} & F_{3}^{(4)} & F_{4}^{(2)} & F_{34}^{(1)} & F_{2}^{(3)} & F_{2}^{(3)} & F_{4}^{(1)} & F_{3}^{(2)} & F_{34}^{(1)} & F_{3}^{(2)} & F_{4}^{(0)} \\
& 1 & 2 & 2 & 2 & 34 & & 2 & 2 & 2 & & \\
& & 1 & 1 & 1 & 2 & & & & & &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllclllllllllll}
f_{3} & 3 & 3 & 3 & 3 & & 34 & 4 & 4 & 3 & 3 & & & & 34 & 4 & & \\
& 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 3
\end{array}
\end{aligned}
$$

Calculating crystal operators using type D Kostant partition

$$
\begin{aligned}
& \begin{array}{cccccccccccc}
F_{1}^{(2)} & F_{2}^{(1)} & F_{3}^{(4)} & F_{4}^{(2)} & F_{34}^{(1)} & F_{2}^{(3)} & F_{2}^{(3)} & F_{4}^{(1)} & F_{3}^{(2)} & F_{34}^{(1)} & F_{3}^{(2)} & F_{4}^{(0)} \\
& 1 & 2 & 2 & 2 & 34 & & 2 & 2 & 2 & & \\
& & 1 & 1 & 1 & 2 & & & & & &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllclllllllllll}
f_{3} & 3 & 3 & 3 & 3 & & 34 & 4 & 4 & 3 & 3 & & & & 34 & 4 & & \\
& 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 3
\end{array}
\end{aligned}
$$

Calculating crystal operators using type D Kostant partition

$$
\begin{array}{cccccccccccc}
F_{1}^{(2)} & F_{2}^{(1)} & F_{3}^{(4)} & F_{4}^{(2)} & F_{34}^{(1)} & F_{2}^{(3)} & F_{2}^{(3)} & F_{4}^{(1)} & F_{3}^{(2)} & F_{34}^{(1)} & F_{3}^{(2)} & F_{4}^{(0)} \\
& 1 & 2 & 2 & 2 & 34 & & 2 & 2 & 2 & & \\
& 1 & 1 & 1 & 2 & & & & & &
\end{array}
$$

$$
\left.\begin{array}{llllllllllcccccccccccc}
& & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 34 & 2 & 2 & 2 & & & & & & 24 & 3 & 2 & 3
\end{array}\right)
$$

$$
\begin{array}{cccccccccccccccccc}
f_{3} & 3 & 3 & 3 & 3 & & 34 & 4 & 4 & 3 & 3 & & & & 34 & 4 & & \\
& 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 3
\end{array}
$$

Calculating crystal operators using type D Kostant partition

$$
\begin{array}{cccccccccccc}
F_{1}^{(2)} & F_{2}^{(1)} & F_{3}^{(4)} & F_{4}^{(2)} & F_{34}^{(1)} & F_{2}^{(3)} & F_{2}^{(3)} & F_{4}^{(1)} & F_{3}^{(2)} & F_{34}^{(1)} & F_{3}^{(2)} & F_{4}^{(0)} \\
& 1 & 2 & 2 & 2 & 34 & & 2 & 2 & 2 & & \\
& 1 & 1 & 1 & 2 & & & & & &
\end{array}
$$

$$
\left.\begin{array}{llllllllllcccccccccccc}
& & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 34 & 2 & 2 & 2 & & & & & & 24 & 34 & 34 & 2
\end{array}\right)
$$

$$
\begin{array}{cccccccccccccccccc}
f_{3} & 3 & 3 & 3 & 3 & & 34 & 4 & 4 & 3 & 3 & & & & 34 & 4 & & \\
& 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 3
\end{array}
$$

Calculating crystal operators using type D Kostant partition

$$
\begin{array}{cccccccccccc}
F_{1}^{(2)} & F_{2}^{(1)} & F_{3}^{(4)} & F_{4}^{(2)} & F_{34}^{(1)} & F_{2}^{(3)} & F_{2}^{(3)} & F_{4}^{(1)} & F_{3}^{(2)} & F_{34}^{(1)} & F_{3}^{(2)} & F_{4}^{(0)} \\
& 1 & 2 & 2 & 2 & 34 & & 2 & 2 & 2 & & \\
& 1 & 1 & 1 & 2 & & & & & &
\end{array}
$$

$$
\left.\begin{array}{llllllllllcccccccccccc}
& & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 34 & 2 & 2 & 2 & & & & & & 24 & 3 & 34 & 2
\end{array}\right)
$$

$$
\begin{array}{cccccccccccccccccc}
f_{3} & 3 & 3 & 3 & 3 & 2 & 34 & 4 & 4 & 3 & 3 & & & & 34 & 4 & & \\
& 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 3 & 3 & 2 & 2 & 2 & 2 & 2 & 3 & 3
\end{array}
$$

$$
\begin{array}{cccccccccccc}
F_{1}^{(2)} & F_{2}^{(1)} & F_{3}^{(4)} & F_{4}^{(2)} & F_{34}^{(1)} & F_{2}^{(3)} & F_{2}^{(2)} & F_{4}^{(1)} & F_{3}^{(3)} & F_{34}^{(1)} & F_{3}^{(2)} & F_{4}^{(0)} \\
& 1 & 2 & 2 & 2 & 34 & & 2 & 2 & 2 & & \\
& 1 & 1 & 1 & 2 & & & & & &
\end{array}
$$

Some citation information

Some citation information

(1) The construction of crystals using PBW bases is all due to Lusztig.

Some citation information

(1) The construction of crystals using PBW bases is all due to Lusztig.
(2) The relation between the PBW basis for the nice reduced expression and multi-segments in type A is basically known, but hard to find; in the form, it recently appeared in "Young Tableaux, Multisegments, and PBW Bases" with John Claxton (Seminaire Lotharingien de Combinatoire), but with a different proof.

Some citation information

(1) The construction of crystals using PBW bases is all due to Lusztig.
(2) The relation between the PBW basis for the nice reduced expression and multi-segments in type A is basically known, but hard to find; in the form, it recently appeared in "Young Tableaux, Multisegments, and PBW Bases" with John Claxton (Seminaire Lotharingien de Combinatoire), but with a different proof.
(3) I think the combinatorial crystal rule in type D_{n} is new; it will show up on the arxiv soon in a paper with Ben Salisbury and Adam Schultze. We can also explain how it relates to other combinatorics in that type, but the relationship is not obvious.

Some citation information

(1) The construction of crystals using PBW bases is all due to Lusztig.
(2) The relation between the PBW basis for the nice reduced expression and multi-segments in type A is basically known, but hard to find; in the form, it recently appeared in "Young Tableaux, Multisegments, and PBW Bases" with John Claxton (Seminaire Lotharingien de Combinatoire), but with a different proof.
(3) I think the combinatorial crystal rule in type D_{n} is new; it will show up on the arxiv soon in a paper with Ben Salisbury and Adam Schultze. We can also explain how it relates to other combinatorics in that type, but the relationship is not obvious.
(9) The reduced expressions we need were all given by Littelmann in his paper "Cones, crystals and patterns," for kind of similar reasons. But his definition looks a little stronger than what we need, so we don't currently have a proof that our construction probably doesn't work in E_{8}.

Thanks!!!!!!

[^0]: ${ }^{1}$ sildes available at http://webpages.math.luc.edu/ \sim ptingley/

