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Background

Background

g is a complex simple Lie algebra...usually sln or son.

Ei,Fi are the Chevalley generators

(for sln, matrices that are zero except
for a 1 just above/below the diagonal).

Uq(g) is the corresponding quantized universal enveloping algebra.

U−
q (g) is the subalgebra generated by the Fi.

B(∞) is the crystal for U−
q (g), which you should think of as

enumerating a basis...although don’t worry about this because one point
of this talk is to discuss a way to construct/define B(∞) in finite type.
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PBW bases and crystal bases

PBW bases and crystal bases

The roots of a Lie algebra g are the non-zero weight spaces of g acting on
itself (these define a set of vector closed under reflection; a root system).

For each reduced expression w0 = si1si2 · · · siN , Lusztig defines an order

αi1 = β1 < β2 < . . . < βN

on positive roots, and elements Fβj in U−
q (g)βj .

{F(n1)
β1
· · ·F(nN)

βN
} is a bases of U−

q (g) (a PBW basis).

There is one such basis Bi for each expression i of w0.
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PBW bases and crystal bases

Relationship between different PBW bases

Theorem (Lusztig)
Let L = spanZ[q]Bi. Then L does not depend on i and neither does Bi + qL.

Proof.

You can get between any two reduced expressions by a series of braid
moves.

Two terms braid moves don’t change the basis at all.

Three term braid moves change three consecutive factors by

Fi′
βk

= Fi
βk+2

Fi′
βk+2

= Fi
βk

Fi
βk+1

= Fi
k+2Fi

k − qFi
kFi

k+2 and Fi′
βk+1

= Fi′
k+2Fi′

k − qFi′
k Fi

k+2.

Can do some (pretty annoying but “elementary") linear algebra to show
spanZ[q]{F

(a)
iβk

F(b)
iβk+1

F(c)
iβk+2
} = spanZ[q]{F

(a)
i′βk

F(b)
i′βk+1

F(c)
i′βk+2

}.
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PBW bases and crystal bases

Relating the two bases for sl3

−α1 −α2

))()))))()))) )(((())))((())

In this case there are exactly two reduced expressions for w0:
i1 := s1s2s1 and i2 := s2s1s2.

One finds that, e.g.,
(Fi1

α2
)(1)(Fi1

α1+α2
)(2)(Fi1

α1
)(3) = (Fi2

α1
)(4)(Fi2

α1+α2
)(1)(Fi2

α2
)(2) mod q.

Can easily classify the polygons that show up this way.
F1 acts simply on one monomial, and in a more complicated way on the
other...but still in a well defined way mod q.
The complicated action is captured by a bracketing rule.
Gives an alternate definition of B(∞) and Kashiwara’s crystal operators.
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Nice reduced expressions and bracketing crystal rules

Calculating crystal operators using braid moves: sl4

s1 s2 s3 s1 s2 s1

α1 (α1+α2) (α1+α2+α3) α2 (α2+α3) α3

e.g. F(2)
1 F(3)

12 F(1)
123 F(3)

2 F(3)
23 F(2)

3

f3 : F(2)
1 F12

(3) F(1)
123 F(3)

3 F(2)
32 F(4)

2

F(2)
1 F3

(1) F(3)
312 F(1)

12 F(2)
32 F(4)

2

F(1)
3 F1

(2) F(3)
312 F(1)

12 F(2)
32 F(4)

2

F(2)
3 F1

(2) F(3)
312 F(1)

12 F(2)
32 F(4)

2

F(2)
1 F12

(3) F(1)
123 F(4)

3 F(2)
32 F(4)

2

F(2)
1 F12

(3) F(1)
123 F(2)

2 F(4)
23 F(2)

3
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Nice reduced expressions and bracketing crystal rules

Calculating braid moves using segments/Kostant partitions
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Gives a bracketing rule as long as each αi can be moved to the front with
all 3-term moves involving αi. There is a reduced expression with this
property in all types except E8 (and F4).
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Nice reduced expressions and bracketing crystal rules

Calculating crystal operators using braid moves: type D4
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Nice reduced expressions and bracketing crystal rules

Some citation information

1 The construction of crystals using PBW bases is all due to Lusztig.
2 The relation between the PBW basis for the nice reduced expression and

multi-segments in type A is basically known, but hard to find; in the
form, it recently appeared in “Young Tableaux, Multisegments, and PBW
Bases" with John Claxton (Seminaire Lotharingien de Combinatoire),
but with a different proof.

3 I think the combinatorial crystal rule in type Dn is new; it will show up
on the arxiv soon in a paper with Ben Salisbury and Adam Schultze. We
can also explain how it relates to other combinatorics in that type, but the
relationship is not obvious.

4 The reduced expressions we need were all given by Littelmann in his
paper “Cones, crystals and patterns," for kind of similar reasons. But his
definition looks a little stronger than what we need, so we don’t currently
have a proof that our construction probably doesn’t work in E8.
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Nice reduced expressions and bracketing crystal rules

Thanks!!!!!!
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