$\widehat{\mathfrak{s l}}_{n}$ crystals and cylindric partitions ${ }^{1}$

Peter Tingley

Massachusetts Institute of Technology

Oregon, March 7, 2011

${ }^{1}$ Slides and notes available at www-math.mit.edu/~ptingley/

Outline

(1) Motivation and background

- Crystals, Characters and Combinatorics
- $\widehat{\mathfrak{s l}}_{n}$ and its crystals
(2) Partiton and cylindric partition models
- The Misra-Miwa-Hayashi realization
- Cylindric partitions and higher level representations
- Two applications
- Relationship with the Kyoto path model
(3) Current work
- Fayers' crystals
- Future directions

Example: $\mathfrak{s l}_{3}$

Example: $\mathfrak{S l}_{3}$

- $\mathfrak{s l}_{3}$ is the Lie algerba consisting of 3×3 matrices with trace 0 .

Example: $\mathfrak{S l}_{3}$

- $\mathfrak{s l}_{3}$ is the Lie algerba consisting of 3×3 matrices with trace 0 .
- The Lie bracket is given by $[A, B]=A B-B A$.

Example: $\mathfrak{s l}_{3}$

- $\mathfrak{s l}_{3}$ is the Lie algerba consisting of 3×3 matrices with trace 0 .
- The Lie bracket is given by $[A, B]=A B-B A$.
- The standard generators are:

$$
\begin{array}{ll}
E_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], & F_{1}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \\
E_{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], & F_{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
\end{array}
$$

Example: $\mathfrak{s l}_{3}$

- $\mathfrak{s l}_{3}$ is the Lie algerba consisting of 3×3 matrices with trace 0 .
- The Lie bracket is given by $[A, B]=A B-B A$.
- The standard generators are:

$$
\begin{array}{ll}
E_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], & F_{1}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \\
E_{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], & F_{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] .
\end{array}
$$

- Any representation of $\mathfrak{s l}_{3}$ decomposes (as a vector space) into the direct sum of the simultaneous eigenspaces for the diagonal matrices (weight spaces).

The adjoint representation of $\mathfrak{s l}_{3}$

The adjoint representation of $\mathfrak{s l}_{3}$

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.

The adjoint representation of $\mathfrak{s l}_{3}$

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.

The adjoint representation of $\mathfrak{s l}_{3}$

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators F_{1} and F_{2} act between weight spaces.

The adjoint representation of $\mathfrak{s l}_{3}$

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators F_{1} and F_{2} act between weight spaces.

The adjoint representation of $\mathfrak{s l}_{3}$

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators F_{1} and F_{2} act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.

The adjoint representation of $\mathfrak{s l}_{3}$

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators F_{1} and F_{2} act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.
- If we use $U_{q}\left(\mathfrak{s l}_{3}\right)$ and 'rescale' the operators, then "at $q=0$ ", they match up.

The adjoint representation of $\mathfrak{s l}_{3}$

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators F_{1} and F_{2} act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.
- If we use $U_{q}\left(\mathfrak{s l}_{3}\right)$ and 'rescale' the operators, then "at $q=0$ ", they match up.

The adjoint representation of $\mathfrak{s l}_{3}$

- There are 6 one dimensional weight spaces and 1 two dimensional weight space.
- The generators F_{1} and F_{2} act between weight spaces.
- There are 4 distinguished one dimensional spaces in the middle.
- If we use $U_{q}\left(\mathfrak{s l}_{3}\right)$ and 'rescale' the operators, then "at $q=0$ ", they match up. You get a colored directed graph.

The adjoint representation of $\mathfrak{s l}_{3}$

- Often the vertices of the crystal graph can be parametrized by combinatorial objects.

The adjoint representation of $\mathfrak{s l}_{3}$

- Often the vertices of the crystal graph can be parametrized by combinatorial objects.

The adjoint representation of $\mathfrak{s l}_{3}$

- Often the vertices of the crystal graph can be parametrized by combinatorial objects.
- Then the combinatorics gives information about representation theory, and vise-versa.

The adjoint representation of $\mathfrak{s l}_{3}$

- Often the vertices of the crystal graph can be parametrized by combinatorial objects.
- Then the combinatorics gives information about representation theory, and vise-versa.
- Here you see that the graded dimension of the representation is the generating function for semi-standard Young tableaux.

Tensor product rule

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s L}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s L}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $\boldsymbol{B}\left(\omega_{1}\right) \otimes \boldsymbol{B}\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Tensor product rule

- For $\mathfrak{s l}_{2}$, crystals are just directed segments.
- Lets take the tensor product of two of these.
- For other types, just treat each $s l_{2}$ independently.
- As an example, consider $B\left(\omega_{1}\right) \otimes B\left(\omega_{2}\right)$ for $\mathfrak{s l}_{3}$.

Littlewood-Richardson rule

Littlewood-Richardson rule

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.

Littlewood-Richardson rule

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.

Littlewood-Richardson rule

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.

Littlewood-Richardson rule

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.

Littlewood-Richardson rule

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.

Littlewood-Richardson rule

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.

Littlewood-Richardson rule

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.

Littlewood-Richardson rule

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.

Littlewood-Richardson rule

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.

Littlewood-Richardson rule

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers,

Littlewood-Richardson rule

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers, here $\{1,1,2,2,3\}$,

Littlewood-Richardson rule

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers, here $\{1,1,2,2,3\}$, and such that the tensor product is highest weight

Littlewood-Richardson rule

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers, here $\{1,1,2,2,3\}$, and such that the tensor product is highest weight (i.e. all e_{i} kill it).

Littlewood-Richardson rule

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers, here $\{1,1,2,2,3\}$, and such that the tensor product is highest weight (i.e. all e_{i} kill it).

Littlewood-Richardson rule

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers, here $\{1,1,2,2,3\}$, and such that the tensor product is highest weight (i.e. all e_{i} kill it).

Littlewood-Richardson rule

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers, here $\{1,1,2,2,3\}$, and such that the tensor product is highest weight (i.e. all e_{i} kill it).

Littlewood-Richardson rule

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers, here $\{1,1,2,2,3\}$, and such that the tensor product is highest weight (i.e. all e_{i} kill it).

Littlewood-Richardson rule

\otimes

- One is often interested in finding the multiplicity of $V(\nu)$ in $V(\lambda) \otimes V(\mu)$.
- Fill the first and second partition with the highest weight tableaux.
- The answer is the number of tableaux on the rightmost shape using exactly the leftover numbers, here $\{1,1,2,2,3\}$, and such that the tensor product is highest weight (i.e. all e_{i} kill it).
- We would need to discuss the actually operators on tableaux to finish, but the point is it is combinatorial, and reasonably easy to compute.

The infinity crystal

The infinity crystal

- There is a crystal B_{λ} for each dominant integral weight λ.

The infinity crystal

- There is a crystal B_{λ} for each dominant integral weight λ.
- $\left\{B_{\lambda}\right\}$ forms a directed system.

The infinity crystal

$B_{\omega_{1}+2 \omega_{2}}$

- There is a crystal B_{λ} for each dominant integral weight λ.
- $\left\{B_{\lambda}\right\}$ forms a directed system.

The infinity crystal

- There is a crystal B_{λ} for each dominant integral weight λ.
- $\left\{B_{\lambda}\right\}$ forms a directed system.

The infinity crystal

- There is a crystal B_{λ} for each dominant integral weight λ.
- $\left\{B_{\lambda}\right\}$ forms a directed system.
- The limit of this system is B_{∞}.

The infinity crystal

The infinity crystal

The infinity crystal

The infinity crystal

- In any realization, I want to understand these injections.

The infinity crystal

- In any realization, I want to understand these injections.
- They come from the fact that there is a canonical basis of $U_{q}^{-}(\mathbf{g})$ which descends to a basis of each $V(\lambda)$.

$\widehat{\mathfrak{s}}_{n}$ and its crystals

$\widehat{\mathfrak{s}}_{n}$ and its crystals

- Definition 1 :

$\widehat{\mathfrak{s}}_{n}$ and its crystals

- Definition 1: $\widehat{\mathfrak{s l}}_{n}^{\prime}$ is a central extension of the Lie algebra of polynomial loops in $\mathfrak{s l n}_{\mathfrak{n}}$

$\widehat{\mathfrak{s}}_{n}$ and its crystals

- Definition 1: $\widehat{\mathfrak{s l}}_{n}^{\prime}$ is a central extension of the Lie algebra of polynomial loops in $\mathfrak{s l n}_{\mathfrak{n}}$

$$
\mathfrak{s l}_{n} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} C
$$

$\widehat{\mathfrak{s l}}_{n}$ and its crystals

- Definition 1: $\widehat{\mathfrak{s l}}_{n}^{\prime}$ is a central extension of the Lie algebra of polynomial loops in $\mathfrak{s l}_{\mathfrak{n}}$

$$
\mathfrak{s l}_{n} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} C
$$

where

$\widehat{\mathfrak{s}}_{n}$ and its crystals

- Definition 1: $\widehat{\mathfrak{s l}}_{n}^{\prime}$ is a central extension of the Lie algebra of polynomial loops in $\mathfrak{s l}_{\mathfrak{n}}$

$$
\mathfrak{s l}_{n} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} C
$$

where
(1) C is central.

$\widehat{\mathfrak{s l}}_{n}$ and its crystals

- Definition 1: $\widehat{\mathfrak{s l}}_{n}^{\prime}$ is a central extension of the Lie algebra of polynomial loops in $\mathfrak{s l}_{\mathfrak{n}}$

$$
\mathfrak{s l}_{n} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} C
$$

where
(1) C is central.
(2) $\left[X \otimes t^{a}, Y \otimes t^{b}\right]=[X, Y] \otimes f(t) g(t)+\operatorname{tr}(\operatorname{ad}(X) \operatorname{ad}(Y)) \delta_{a+b, 0} C$.

$\widehat{\mathfrak{s}}_{n}$ and its crystals

$\widehat{\mathfrak{s}}_{n}$ and its crystals

- Definition 2:

$\widehat{\mathfrak{s}}_{n}$ and its crystals

- Definition 2: $\widehat{\mathfrak{s l}}_{n}$ (for $n \geq 3$) is the Kac-Moody algebra with dynkin diagram

$\widehat{\mathfrak{s}}_{n}$ and its crystals

- Definition 2: $\widehat{\mathfrak{s l}}_{n}$ (for $n \geq 3$) is the Kac-Moody algebra with dynkin diagram

- $\widehat{\mathfrak{s}}_{n}^{\prime}$ is generated by $\left\{E_{i}, F_{i}\right\}_{0 \leq i \leq n-1}$ subject to the relations that for each pair $0 \leq i<j \leq n-1,\left\{E_{i}, F_{i}, E_{j}, F_{j}\right\}$ generate a copy of

$$
\left\{\begin{array}{l}
\mathfrak{s l}_{3} \text { if }|i-j|=1 \bmod (n) \\
\mathfrak{s l}_{2} \times \mathfrak{s l}_{2} \text { otherwise. }
\end{array}\right.
$$

$\widehat{\mathfrak{s}}_{n}$ and its crystals

- Definition 2: $\widehat{\mathfrak{s l}}_{n}$ (for $n \geq 3$) is the Kac-Moody algebra with dynkin diagram

- $\widehat{\mathfrak{s}}_{n}^{\prime}$ is generated by $\left\{E_{i}, F_{i}\right\}_{0 \leq i \leq n-1}$ subject to the relations that for each pair $0 \leq i<j \leq n-1,\left\{E_{i}, F_{i}, E_{j}, F_{j}\right\}$ generate a copy of

$$
\left\{\begin{array}{l}
\mathfrak{s l}_{3} \text { if }|i-j|=1 \bmod (n) \\
\mathfrak{s l}_{2} \times \mathfrak{s l}_{2} \text { otherwise. }
\end{array}\right.
$$

For $\widehat{\mathfrak{s l}}_{4}$:

$\widehat{\mathfrak{s}}_{n}$ and its crystals

- Definition 2: $\widehat{\mathfrak{s l}}_{n}$ (for $n \geq 3$) is the Kac-Moody algebra with dynkin diagram

- $\widehat{\mathfrak{s}}_{n}^{\prime}$ is generated by $\left\{E_{i}, F_{i}\right\}_{0 \leq i \leq n-1}$ subject to the relations that for each pair $0 \leq i<j \leq n-1,\left\{E_{i}, F_{i}, E_{j}, F_{j}\right\}$ generate a copy of

$$
\left\{\begin{array}{l}
\mathfrak{s l}_{3} \text { if }|i-j|=1 \bmod (n) \\
\mathfrak{s l}_{2} \times \mathfrak{s l}_{2} \text { otherwise. }
\end{array}\right.
$$

For $\widehat{\mathfrak{s l}}_{4}$:

$$
E_{2}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

$\widehat{\mathfrak{s}}_{n}$ and its crystals

- Definition 2: $\widehat{\mathfrak{s l}}_{n}$ (for $n \geq 3$) is the Kac-Moody algebra with dynkin diagram

- $\widehat{\mathfrak{s l}}_{n}^{\prime}$ is generated by $\left\{E_{i}, F_{i}\right\}_{0 \leq i \leq n-1}$ subject to the relations that for each pair $0 \leq i<j \leq n-1,\left\{E_{i}, F_{i}, E_{j}, F_{j}\right\}$ generate a copy of

$$
\left\{\begin{array}{l}
\mathfrak{s l}_{3} \text { if }|i-j|=1 \bmod (n) \\
\mathfrak{s l}_{2} \times \mathfrak{s l}_{2} \text { otherwise. }
\end{array}\right.
$$

For $\widehat{\mathfrak{s l}}_{4}$:

$$
E_{2}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad E_{0}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
t & 0 & 0 & 0
\end{array}\right)
$$

$\widehat{\mathfrak{s}}_{n}$ and its crystals

$\widehat{\mathfrak{s}}_{n}$ and its crystals

- Fix $n \geq 3$. An (infinite) n-colored directed graph is an $\widehat{\mathfrak{s l}}_{n}$ crystal if, for each pair of colors c_{i} and c_{j}, the graph consisting of all edges of those 2 colors is

$\widehat{\mathfrak{s}}_{n}$ and its crystals

- Fix $n \geq 3$. An (infinite) n-colored directed graph is an $\widehat{\mathfrak{s l}}_{n}$ crystal if, for each pair of colors c_{i} and c_{j}, the graph consisting of all edges of those 2 colors is
$\left\{\mathrm{An} \mathrm{sl}_{3}\right.$ crystal graph if $|i-j|=1 \bmod (n)$
An sl ${ }_{2} \times \mathrm{sl}_{2}$ crystal graph otherwise.

$\widehat{\mathfrak{s}}_{n}$ and its crystals

- Fix $n \geq 3$. An (infinite) n-colored directed graph is an $\widehat{\mathfrak{s l}}_{n}$ crystal if, for each pair of colors c_{i} and c_{j}, the graph consisting of all edges of those 2 colors is

$$
\left\{\begin{array}{l}
\mathrm{An} \mathrm{sl}_{3} \text { crystal graph if }|i-j|=1 \bmod (n) \\
\mathrm{An} \mathrm{sl}_{2} \times \mathrm{sl}_{2} \text { crystal graph otherwise }
\end{array}\right.
$$

- In fact, it is a theorem of Kashiwara that, to check a graph is a crystal, it suffices to look at rank 2 behavior.

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s l}}{ }_{3}$

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for ${\widehat{\mathfrak{s}} 3_{3}}$

- We define crystal operators on partitions.

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s}_{3}}$

- We define crystal operators on partitions.

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s l}_{3}}$

- We define crystal operators on partitions. Here (7, 6, 6, 6, 5, 3, 2).

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s}_{3}}$

- We define crystal operators on partitions. Here (7, 6, 6, 6, 5, 3, 2).
- Color the boxes in the partition periodically with $n=3$ colors.

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s l}_{3}}$

- We define crystal operators on partitions. Here (7, 6, 6, 6, 5, 3, 2).
- Color the boxes in the partition periodically with $n=3$ colors.

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s l}_{3}}$

- $F_{\overline{2}}$ adds a $\overline{2}$ colored box.

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s l}_{3}}$

- $F_{\overline{2}}$ adds a $\overline{2}$ colored box.

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s}_{3}}$

- $F_{\overline{2}}$ adds a $\overline{2}$ colored box.

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s}_{3}}$

- $F_{\overline{2}}$ adds a $\overline{2}$ colored box.

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s}_{3}}$

- $F_{\overline{2}}$ adds a $\overline{2}$ colored box.

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s}_{3}}$

- $F_{\overline{2}}$ adds a $\overline{2}$ colored box.

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s}_{3}}$

- $F_{\overline{2}}$ adds a $\overline{2}$ colored box.

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s}_{3}}$

- $F_{\overline{2}}$ adds a $\overline{2}$ colored box.

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s}_{3}}$

- $F_{\overline{2}}$ adds a $\overline{2}$ colored box.

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s}_{3}}$

- $F_{\overline{2}}$ adds a $\overline{2}$ colored box.
- $E_{\overline{2}}$ would send this partition to 0 .

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s l}}_{3}$

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s l}_{3}}$

- Every connected is a copy of $B_{\Lambda_{0}}$.

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s l}_{3}}$

- Every connected is a copy of $B_{\Lambda_{0}}$. In particular, the subcrystal generated by the empty partition is a model for $B_{\Lambda_{0}}$.

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s l}_{3}}$

- Every connected is a copy of $B_{\Lambda_{0}}$. In particular, the subcrystal generated by the empty partition is a model for $B_{\Lambda_{0}}$.

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s i}_{3}}$

- Every connected is a copy of $B_{\Lambda_{0}}$. In particular, the subcrystal generated by the empty partition is a model for $B_{\Lambda_{0}}$.
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of $B_{\Lambda_{0}}$

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s i}_{3}}$

- Every connected is a copy of $B_{\Lambda_{0}}$. In particular, the subcrystal generated by the empty partition is a model for $B_{\Lambda_{0}}$.
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of $B_{\Lambda_{0}}$ (no 3 rows of same length).

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s i}_{3}}$

- Every connected is a copy of $B_{\Lambda_{0}}$. In particular, the subcrystal generated by the empty partition is a model for $B_{\Lambda_{0}}$.
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of $B_{\Lambda_{0}}$ (no 3 rows of same length).

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s i}_{3}}$

- Every connected is a copy of $B_{\Lambda_{0}}$. In particular, the subcrystal generated by the empty partition is a model for $B_{\Lambda_{0}}$.
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of $B_{\Lambda_{0}}$ (no 3 rows of same length).

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s i}_{3}}$

- Every connected is a copy of $B_{\Lambda_{0}}$. In particular, the subcrystal generated by the empty partition is a model for $B_{\Lambda_{0}}$.
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of $B_{\Lambda_{0}}$ (no 3 rows of same length).

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s i}_{3}}$

- Every connected is a copy of $B_{\Lambda_{0}}$. In particular, the subcrystal generated by the empty partition is a model for $B_{\Lambda_{0}}$.
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of $B_{\Lambda_{0}}$ (no 3 rows of same length).

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s i}_{3}}$

- Every connected is a copy of $B_{\Lambda_{0}}$. In particular, the subcrystal generated by the empty partition is a model for $B_{\Lambda_{0}}$.
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of $B_{\Lambda_{0}}$ (no 3 rows of same length).

The Misra-Miwa-Hayashi realizarion of $B_{\Lambda_{0}}$ for $\widehat{\mathfrak{s i}_{3}}$

- Every connected is a copy of $B_{\Lambda_{0}}$. In particular, the subcrystal generated by the empty partition is a model for $B_{\Lambda_{0}}$.
- The subcrystal generated by the empty partition consists exactly of the 3-regular partitions are a single copy of $B_{\Lambda_{0}}$ (no 3 rows of same length).
- For instance, we now know that the q-character of $V_{\Lambda_{0}}$ is equal to the generating function of 3-regular partitions counted by size.

Higher level crystals

Higher level crystals

- The following is based on work of Jimbo-Misra-Miwa-Okado.

Higher level crystals

- The following is based on work of Jimbo-Misra-Miwa-Okado.
- Vertices of level ℓ crystals are parameterized by three dimensional 'cylindric partitions.'

Higher level crystals

- The following is based on work of Jimbo-Misra-Miwa-Okado.
- Vertices of level ℓ crystals are parameterized by three dimensional 'cylindric partitions.' Consider $n=3$, level 2 .

Higher level crystals

- The following is based on work of Jimbo-Misra-Miwa-Okado.
- Vertices of level ℓ crystals are parameterized by three dimensional 'cylindric partitions.' Consider $n=3$, level 2 .

Higher level crystals

- The following is based on work of Jimbo-Misra-Miwa-Okado.
- Vertices of level ℓ crystals are parameterized by three dimensional 'cylindric partitions.' Consider $n=3$, level 2 .
- For a fixed highest weight, e.g, $\Lambda_{0}+\Lambda_{1}$, color the boxes.

Higher level crystals

- The following is based on work of Jimbo-Misra-Miwa-Okado.
- Vertices of level ℓ crystals are parameterized by three dimensional 'cylindric partitions.' Consider $n=3$, level 2 .
- For a fixed highest weight, e.g, $\Lambda_{0}+\Lambda_{1}$, color the boxes.

Higher level crystals

- The following is based on work of Jimbo-Misra-Miwa-Okado.
- Vertices of level ℓ crystals are parameterized by three dimensional 'cylindric partitions.' Consider $n=3$, level 2 .
- For a fixed highest weight, e.g, $\Lambda_{0}+\Lambda_{1}$, color the boxes.

Higher level crystals

Higher level crystals

- People usually denote this by a tupple of partitions.

Higher level crystals

Higher level crystals

Higher level crystals

Higher level crystals

Higher level crystals

Higher level crystals

Higher level crystals

- There are natural crystal operations such that each connected component is a copy of $B(\Lambda)$.

Higher level crystals

- There are natural crystal operations such that each connected component is a copy of $B(\Lambda)$.
- A cylindric partition is in the 'highest copy' if and only if it does not have three differently colored piles of the same height.

Higher level crystals

Higher level crystals

- The embeddings $B_{\Lambda} \hookrightarrow B_{\Lambda^{\prime}}$ are given by "shifting".

Higher level crystals

- The embeddings $B_{\Lambda} \hookrightarrow B_{\Lambda^{\prime}}$ are given by "shifting".

Higher level crystals

- The embeddings $B_{\Lambda} \hookrightarrow B_{\Lambda^{\prime}}$ are given by "shifting".

Higher level crystals

- The embeddings $B_{\Lambda} \hookrightarrow B_{\Lambda^{\prime}}$ are given by "shifting".

Higher level crystals

- The embeddings $B_{\Lambda} \hookrightarrow B_{\Lambda^{\prime}}$ are given by "shifting".

Higher level crystals

- The embeddings $B_{\Lambda} \hookrightarrow B_{\Lambda^{\prime}}$ are given by "shifting".

Higher level crystals

- The embeddings $B_{\Lambda} \hookrightarrow B_{\Lambda^{\prime}}$ are given by "shifting".

Higher level crystals

- The embeddings $B_{\Lambda} \hookrightarrow B_{\Lambda^{\prime}}$ are given by "shifting".

Higher level crystals

- The embeddings $B_{\Lambda} \hookrightarrow B_{\Lambda^{\prime}}$ are given by "shifting".

Higher level crystals

- The embeddings $B_{\Lambda} \hookrightarrow B_{\Lambda^{\prime}}$ are given by "shifting".

Higher level crystals

- The embeddings $B_{\Lambda} \hookrightarrow B_{\Lambda^{\prime}}$ are given by "shifting".

Higher level crystals

- The embeddings $B_{\Lambda} \hookrightarrow B_{\Lambda^{\prime}}$ are given by "shifting".

Higher level crystals

Higher level crystals

- The imbedding into B_{∞} just records the vertical piles, not the arrangement into an ℓ-tuple of partitions.

Higher level crystals

- The imbedding into B_{∞} just records the vertical piles, not the arrangement into an ℓ-tuple of partitions.

Higher level crystals

2
$\overline{1}$
$\overline{0}$

Higher level crystals

Higher level crystals

Higher level crystals

Higher level crystals

Higher level crystals

Higher level crystals

- The B_{∞} crystal structure reads boxes in order of height.

Higher level crystals

- The B_{∞} crystal structure reads boxes in order of height. For f_{2} :

Higher level crystals

- The B_{∞} crystal structure reads boxes in order of height. For f_{2} :

Higher level crystals

- The B_{∞} crystal structure reads boxes in order of height. For f_{2} :

Higher level crystals

- The B_{∞} crystal structure reads boxes in order of height. For f_{2} :

Higher level crystals

- The B_{∞} crystal structure reads boxes in order of height. For f_{2} :

Higher level crystals

- The B_{∞} crystal structure reads boxes in order of height. For f_{2} :

Higher level crystals

- The B_{∞} crystal structure reads boxes in order of height. For f_{2} :

Higher level crystals

- The B_{∞} crystal structure reads boxes in order of height. For f_{2} :

Higher level crystals

- The B_{∞} crystal structure reads boxes in order of height. For f_{2} :

Higher level crystals

(2)

- The B_{∞} crystal structure reads boxes in order of height. For f_{2} :

Higher level crystals

- The B_{∞} crystal structure reads boxes in order of height. For f_{2} :

Higher level crystals

(2)

- The B_{∞} crystal structure reads boxes in order of height. For f_{2} :

Higher level crystals

- Cylindric partitions are only needed to describe the image of $B_{\text {A }}$.

Application: generating functions/partition functions

Application: generating functions/partition functions

Application: generating functions/partition functions

Application: generating functions/partition functions

- The generating function for cylindric partitions on a given cylinder is a specialization of the Weyl character formula.

Application: generating functions/partition functions

- The generating function for cylindric partitions on a given cylinder is a specialization of the Weyl character formula. Since we want all cylindric partitions, not just ℓ regular ones, use Weyl character formula for $\widehat{\mathfrak{g}}_{n}$, not $\widehat{\mathfrak{s l}}_{n}$.

Application: generating functions/partition functions

- The generating function for cylindric partitions on a given cylinder is a specialization of the Weyl character formula. Since we want all cylindric partitions, not just ℓ regular ones, use Weyl character formula for $\widehat{\mathfrak{g l}}_{n}$, not $\mathfrak{s l}_{n}$.

Corollary

$\sum \quad q^{|\pi|}=\operatorname{dim}_{q}\left(W_{\Lambda}\right)$, where W_{Λ} is an irreducible representation
mon a given cylinder
of $\widehat{\mathfrak{g}}_{n}$ at level ℓ. (Calculated by A. Borodin in a different form).

Borodin's result

Borodin's result

Theorem

(Borodin 2006) The partition function for cylindric plane partitions is given by:

$$
\begin{aligned}
& Z:=\sum_{\begin{array}{l}
\text { cylindric partitions } \\
\quad q^{|\pi|}
\end{array}=\prod_{k \geq 1} \frac{1}{1-q^{k N}} \prod_{i \in \overline{1, N}: A[i]=1} \frac{1}{1-q^{(i-j)(N)+(k-1) N}} .} \quad \begin{array}{l}
j \in \overline{1, N}: A[j]=0
\end{array}
\end{aligned}
$$

Borodin's result

Theorem

(Borodin 2006) The partition function for cylindric plane partitions is given by:

$$
\begin{aligned}
& Z:=\sum_{\begin{array}{l}
\text { cylindric partitions } \\
\quad q^{|\pi|}
\end{array}=\prod_{k \geq 1} \frac{1}{1-q^{k N}} \prod_{i \in \overline{1, N}: A[i]=1} \frac{1}{1-q^{(i-j)(N)+(k-1) N}} .} \quad \begin{array}{l}
j \in \overline{1, N}: A[j]=0
\end{array}
\end{aligned}
$$

- $N=n+\ell$

Borodin's result

Theorem

(Borodin 2006) The partition function for cylindric plane partitions is given by:

$$
\begin{aligned}
& Z:=\sum_{\begin{array}{l}
\text { cylindric partitions } \\
\quad q^{|\pi|}
\end{array}=\prod_{k \geq 1} \frac{1}{1-q^{k N}} \prod_{i \in \overline{1, N}: A[i]}=\frac{1}{1-q^{(i-j)(N)+(k-1) N}} .} \begin{array}{l}
j \in \overline{1, N}: A[j]=0
\end{array}
\end{aligned}
$$

- $N=n+\ell$
- For any $k \in \mathbb{Z}, k(N)$ is the smallest non-negative integer congruent to k modulo N.

Borodin's result

Theorem

(Borodin 2006) The partition function for cylindric plane partitions is given by:

$$
\begin{aligned}
& Z:=\sum_{\begin{array}{c}
\text { cylindric partitions } \\
\quad q^{|\pi|}
\end{array}=\prod_{k \geq 1} \frac{1}{1-q^{k N}} \prod_{i \in \overline{1, N}: A[i]}=\frac{1}{1-q^{(i-j)(N)+(k-1) N}} .} \quad \begin{array}{l}
j \in \overline{1, N}: A[j]=0
\end{array}
\end{aligned}
$$

- $N=n+\ell$
- For any $k \in \mathbb{Z}, k(N)$ is the smallest non-negative integer congruent to k modulo N.
- $\overline{1, N}$ is the set of integers modulo N.

Borodin's result

Theorem

(Borodin 2006) The partition function for cylindric plane partitions is given by:

$$
\begin{aligned}
& Z:=\sum_{\begin{array}{l}
\text { cylindric partitions } \\
\quad q^{|\pi|}
\end{array}=\prod_{k \geq 1} \frac{1}{1-q^{k N}} \prod_{i \in \overline{1, N}: A[i]=1} \frac{1}{1-q^{(i-j)(N)+(k-1) N}} .} \quad \begin{array}{l}
j \in \overline{1, N}: A[j]=0
\end{array}
\end{aligned}
$$

- $N=n+\ell$
- For any $k \in \mathbb{Z}, k(N)$ is the smallest non-negative integer congruent to k modulo N.
- $\overline{1, N}$ is the set of integers modulo N.
- $A[i]= \begin{cases}1 & \text { if the boundary is sloping up and to the right at } i \\ 0 & \text { otherwise }\end{cases}$

Borodin's result

Borodin's result

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.

Borodin's result

Borodin's result

Borodin's result

Borodin's result

Borodin's result

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.

Borodin's result

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.
- To do that, he needed to use "shift-mixing." It seems you don't get a determinental process otherwise

Borodin's result

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.
- To do that, he needed to use "shift-mixing." It seems you don't get a determinental process otherwise (I'm quoting Borodin, and he says this hasn't been proven).

Borodin's result

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.
- To do that, he needed to use "shift-mixing." It seems you don't get a determinental process otherwise (I'm quoting Borodin, and he says this hasn't been proven).
- But 'shift mixing' is meaningful in representation theory as well.

Borodin's result

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.
- To do that, he needed to use "shift-mixing." It seems you don't get a determinental process otherwise (I'm quoting Borodin, and he says this hasn't been proven).
- But 'shift mixing' is meaningful in representation theory as well. It means you are looking at a representation of $\widehat{\mathfrak{s l}}_{n} \oplus C l$, where $C l$ is an infinite dimensional Clifford algebra.

Borodin's result

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.
- To do that, he needed to use "shift-mixing." It seems you don't get a determinental process otherwise (I'm quoting Borodin, and he says this hasn't been proven).
- But 'shift mixing' is meaningful in representation theory as well. It means you are looking at a representation of $\widehat{\mathfrak{s l}}_{n} \oplus C l$, where $C l$ is an infinite dimensional Clifford algebra. This is actually done quite often.

Borodin's result

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.
- To do that, he needed to use "shift-mixing." It seems you don't get a determinental process otherwise (I'm quoting Borodin, and he says this hasn't been proven).
- But 'shift mixing' is meaningful in representation theory as well. It means you are looking at a representation of $\widehat{\mathfrak{s l}}_{n} \oplus C l$, where $C l$ is an infinite dimensional Clifford algebra. This is actually done quite often.
- Question: what do Borodin's results mean representation theoretically?

Borodin's result

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.
- To do that, he needed to use "shift-mixing." It seems you don't get a determinental process otherwise (I'm quoting Borodin, and he says this hasn't been proven).
- But 'shift mixing' is meaningful in representation theory as well. It means you are looking at a representation of $\widehat{\mathfrak{s l}}_{n} \oplus C l$, where $C l$ is an infinite dimensional Clifford algebra. This is actually done quite often.
- Question: what do Borodin's results mean representation theoretically?
- Answer: They tell you something about expected behavior of randomly chosen basis vectors...

Borodin's result

- In fact, Borodin also calculated correlation functions for a system of random cylindric partitions.
- To do that, he needed to use "shift-mixing." It seems you don't get a determinental process otherwise (I'm quoting Borodin, and he says this hasn't been proven).
- But 'shift mixing' is meaningful in representation theory as well. It means you are looking at a representation of $\widehat{\mathfrak{s l}}_{n} \oplus C l$, where $C l$ is an infinite dimensional Clifford algebra. This is actually done quite often.
- Question: what do Borodin's results mean representation theoretically?
- Answer: They tell you something about expected behavior of randomly chosen basis vectors...but it is really a statistic on the combinatorial indexing set, I don't know what it means in any deeper sense.

Application: Level-rank duality

Application: Level-rank duality

Application: Level-rank duality

Application: Level-rank duality

- You can interpret a given cylinder as a level ℓ highest weight for $\widehat{\mathfrak{s l}}_{n}$ or a level n highest weight for $\widehat{s l}_{\ell}$. Thus we observe:

Application: Level-rank duality

- You can interpret a given cylinder as a level ℓ highest weight for $\widehat{\mathfrak{s l}}_{n}$ or a level n highest weight for $\mathfrak{s l}_{\ell}$. Thus we observe:

Theorem (originally due to I. Frenkel)

Application: Level-rank duality

- You can interpret a given cylinder as a level ℓ highest weight for $\widehat{\mathfrak{s l}}_{n}$ or a level n highest weight for $\mathfrak{s l}_{\ell}$. Thus we observe:

Theorem (originally due to I. Frenkel)

Let W_{Λ} be an irreducible integrable level ℓ representation of $\widehat{\mathfrak{g l}}_{n}$.

Application: Level-rank duality

- You can interpret a given cylinder as a level ℓ highest weight for $\widehat{\mathfrak{s l}}_{n}$ or a level n highest weight for $\widehat{\mathfrak{s l}} \ell_{\ell}$. Thus we observe:

Theorem (originally due to I. Frenkel)

Let W_{Λ} be an irreducible integrable level ℓ representation of $\hat{\mathfrak{g l}}_{n}$. There is a corresponding level n irreducible integral representation $W_{\Lambda^{\prime}}$ of $\widehat{\mathfrak{g}} l_{\ell}$ so that

Application: Level-rank duality

- You can interpret a given cylinder as a level ℓ highest weight for $\widehat{\mathfrak{s l}}_{n}$ or a level n highest weight for $\widehat{\mathfrak{s l}} \ell_{\ell}$. Thus we observe:

Theorem (originally due to I. Frenkel)

Let W_{Λ} be an irreducible integrable level ℓ representation of $\widehat{\mathfrak{g}}_{n}$. There is a corresponding level n irreducible integral representation $W_{\Lambda^{\prime}}$ of $\widehat{\mathfrak{g}} l_{\ell}$ so that

$$
\operatorname{dim}_{q}\left(W_{\Lambda}\right)=\operatorname{dim}_{q}\left(W_{\Lambda^{\prime}}\right)
$$

Relation to the Kyoto path model

Relation to the Kyoto path model

Relation to the Kyoto path model

Relation to the Kyoto path model

Relation to the Kyoto path model

Relation to the Kyoto path model

Relation to the Kyoto path model

Relation to the Kyoto path model

Relation to the Kyoto path model

Relation to the Kyoto path model

Relation to the Kyoto path model

Relation to the Kyoto path model

Relation to the Kyoto path model

Relation to the Kyoto path model

Relation to the Kyoto path model

$\overline{1}$	$\overline{2}$				
:---	:---	:---	\quad	$\overline{1}$	$\overline{2}$
:---	:---	:---	\quad	$\overline{1}$	$\overline{1}$
:---	:---	:---	\quad		

Relation to the Kyoto path model

$\overline{0}$	$\overline{2}$						
:---	:---	:---	:---	:---	\quad	$\overline{1}$	$\overline{2}$
:---	:---	:---	\quad	$\overline{1}$	$\overline{2}$		
| :--- | :--- | :--- |$\quad \overline{1}, \quad$| $\overline{0}$ | $\overline{1}$ |
| :--- | :--- |

Relation to the Kyoto path model

$\overline{0}$ $\overline{1}$	0 22	12	12	11	0	$\overline{1}$

Relation to the Kyoto path model

Relation to the Kyoto path model

$\cdots \quad$| $\overline{1}$ |
| :---: |

\otimes

| $\overline{0}$ | $\overline{1}$ |
| :--- | :--- |\otimes| $\overline{0}$ | $\overline{2}$ |
| :--- | :--- |

\otimes| $\overline{1}$ | $\overline{2}$ |
| :--- | :--- |

\otimes \square \otimes

\otimes| $\overline{0}$ | $\overline{1}$ |
| :--- | :--- |

Recent developement: Berg/Fayers’ crystals

Recent developement: Berg/Fayers’ crystals

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.

Recent developement: Berg/Fayers' crystals

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.

Recent developement: Berg/Fayers' crystals

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i}=\overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

Recent developement: Berg/Fayers' crystals

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i}=\overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

Recent developement: Berg/Fayers' crystals

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i}=\overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

Recent developement: Berg/Fayers' crystals

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i}=\overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

Recent developement: Berg/Fayers' crystals

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i}=\overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

Recent developement: Berg/Fayers' crystals

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i}=\overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

Recent developement: Berg/Fayers' crystals

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i}=\overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

Recent developement: Berg/Fayers' crystals

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i}=\overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

Recent developement: Berg/Fayers' crystals

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i}=\overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

Recent developement: Berg/Fayers' crystals

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i}=\overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

Recent developement: Berg/Fayers' crystals

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i}=\overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.

Recent developement: Berg/Fayers' crystals

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i}=\overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.
- $F_{\overline{2}}$ adds the box corresponding to the first uncanceled \frown.

Recent developement: Berg/Fayers' crystals

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i}=\overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.
- $F_{\overline{2}}$ adds the box corresponding to the first uncanceled \frown.

Recent developement: Berg/Fayers' crystals

- Define new operators $E_{\bar{i}}$ and $F_{\bar{i}}$ on the set of partitions.
- for $\bar{i}=\overline{2}$, constuct a string of brackets as before, but ordered lexicographically by height, then right to left.
- $F_{\overline{2}}$ adds the box corresponding to the first uncanceled \frown.

Recent developement: Berg/Fayers’ crystals

Recent developement: Berg/Fayers' crystals

- The component generated by the empty partition is a copy of $B\left(\Lambda_{0}\right)$.

Recent developement: Berg/Fayers' crystals

- The component generated by the empty partition is a copy of $B\left(\Lambda_{0}\right)$.
- CAUTION: other components are not all crystals.

Recent developement: Berg/Fayers' crystals

- The component generated by the empty partition is a copy of $B\left(\Lambda_{0}\right)$.
- CAUTION: other components are not all crystals.
- A partition is in $B\left(\Lambda_{0}\right)$ if and only if there are no illegal hooks.

Recent developement: Berg/Fayers' crystals

- The component generated by the empty partition is a copy of $B\left(\Lambda_{0}\right)$.
- CAUTION: other components are not all crystals.
- A partition is in $B\left(\Lambda_{0}\right)$ if and only if there are no illegal hooks.

Recent developement: Berg/Fayers' crystals

- The component generated by the empty partition is a copy of $B\left(\Lambda_{0}\right)$.
- CAUTION: other components are not all crystals.
- A partition is in $B\left(\Lambda_{0}\right)$ if and only if there are no illegal hooks.

Recent developement: Berg/Fayers' crystals

- The component generated by the empty partition is a copy of $B\left(\Lambda_{0}\right)$.
- CAUTION: other components are not all crystals.
- A partition is in $B\left(\Lambda_{0}\right)$ if and only if there are no illegal hooks.

Recent developement: Berg/Fayers' crystals

- The component generated by the empty partition is a copy of $B\left(\Lambda_{0}\right)$.
- CAUTION: other components are not all crystals.
- A partition is in $B\left(\Lambda_{0}\right)$ if and only if there are no illegal hooks.

Recent developement: Berg/Fayers' crystals

- The component generated by the empty partition is a copy of $B\left(\Lambda_{0}\right)$.
- CAUTION: other components are not all crystals.
- A partition is in $B\left(\Lambda_{0}\right)$ if and only if there are no illegal hooks.

Recent developement: Berg/Fayers’ crystals

Recent developement: Berg/Fayers' crystals

- One can actually read the boxes according to ANY slope (in a certain range)

Recent developement: Berg/Fayers' crystals

- One can actually read the boxes according to ANY slope (in a certain range)

Recent developement: Berg/Fayers' crystals

- One can actually read the boxes according to ANY slope (in a certain range)

Recent developement: Berg/Fayers' crystals

- One can actually read the boxes according to ANY slope (in a certain range)

Recent developement: Berg/Fayers' crystals

- One can actually read the boxes according to ANY slope (in a certain range)

Recent developement: Berg/Fayers' crystals

- One can actually read the boxes according to ANY slope (in a certain range)
- The same result is true, although definition of "illegal hook" is a bit more complicated.

Recent developement: Berg/Fayers' crystals

- One can actually read the boxes according to ANY slope (in a certain range)
- The same result is true, although definition of "illegal hook" is a bit more complicated.
- This gives uncountably many realizations of $B_{\Lambda_{0}}$.

Future directions

Future directions

- I established a connection between one case of Fayers' crystal and a case of Nakajima's monomial crystal

Future directions

- I established a connection between one case of Fayers' crystal and a case of Nakajima's monomial crystal
- Nakajima's monomial crystal comes from deep algebraic and geometric structures (q-characters; quiver varieties). Perhaps these can be used to understand why Fayers' crystals exist.

Future directions

- I established a connection between one case of Fayers' crystal and a case of Nakajima's monomial crystal
- Nakajima's monomial crystal comes from deep algebraic and geometric structures (q-characters; quiver varieties). Perhaps these can be used to understand why Fayers' crystals exist.
- The rest of the picture works at higher level. Can Fayers' rule be extended beyond level 1 ?

Future directions

- I established a connection between one case of Fayers' crystal and a case of Nakajima's monomial crystal
- Nakajima's monomial crystal comes from deep algebraic and geometric structures (q-characters; quiver varieties). Perhaps these can be used to understand why Fayers' crystals exist.
- The rest of the picture works at higher level. Can Fayers' rule be extended beyond level 1 ?
- Current work with Steven Sam is going to answer at least some of this.

Future directions

- I established a connection between one case of Fayers' crystal and a case of Nakajima's monomial crystal
- Nakajima's monomial crystal comes from deep algebraic and geometric structures (q -characters; quiver varieties). Perhaps these can be used to understand why Fayers' crystals exist.
- The rest of the picture works at higher level. Can Fayers' rule be extended beyond level 1?
- Current work with Steven Sam is going to answer at least some of this. We can show that the 'slope' in Fayers model comes from a choice of \mathbb{C}^{*} action on Nakajima's quiver varieties.

Future directions

- I established a connection between one case of Fayers' crystal and a case of Nakajima's monomial crystal
- Nakajima's monomial crystal comes from deep algebraic and geometric structures (q-characters; quiver varieties). Perhaps these can be used to understand why Fayers' crystals exist.
- The rest of the picture works at higher level. Can Fayers' rule be extended beyond level 1?
- Current work with Steven Sam is going to answer at least some of this. We can show that the 'slope' in Fayers model comes from a choice of \mathbb{C}^{*} action on Nakajima's quiver varieties. This should work at higher levels, and in fact in more general quiver varieties.

Future directions

- I established a connection between one case of Fayers' crystal and a case of Nakajima's monomial crystal
- Nakajima's monomial crystal comes from deep algebraic and geometric structures (q -characters; quiver varieties). Perhaps these can be used to understand why Fayers' crystals exist.
- The rest of the picture works at higher level. Can Fayers' rule be extended beyond level 1?
- Current work with Steven Sam is going to answer at least some of this. We can show that the 'slope' in Fayers model comes from a choice of \mathbb{C}^{*} action on Nakajima's quiver varieties. This should work at higher levels, and in fact in more general quiver varieties. Maybe we'll even find some new combinatorics.

