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Deformations and preferred deformations

Deformations

Definition
A an algebraic thing over a field C. A (formal) deformation of A is the same
sort of algebraic thing over C[[~]] which becomes A when ~ is set to 0.

For us, algebraic thing will be a bialgebra, so A has multiplication µ and
comultiplication ∆ (and unit and counit I guess).
The deformed version in A~ look like

µ~(a, b) = µ0(a, b) + ~µ1(a, b) + ~2µ2(a, b) + · · ·
∆~(a) = ∆0(a) + ~∆1(a) + h2∆2(a) + · · ·

where µ0,∆0 are the original multiplication and comultiplication.

Definition
Two deformations A~ and A′~ are equivalent if they are isomorphic (as
bialgebras), using an isomorphism which is the identity at ~ = 0 (i.e.
becomes the identity on A[[~]]/~A[[~]]).
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Deformations and preferred deformations

Cases of U~(g) and O~(G)

In fact, we only really work with U~(g) and O~(G).

U~(g) is known to be a trivial deformation of the algebra structure,
meaning it is equivalent to a deformation where multiplication is
unchanged.

Similarly, O~(G) is a trivial deformation of the co-algebra structure.

The question of a preferred deformation/preferred presentation it to
realize these in such a way that mult/comult is literally unchanged.

Kind of equivalently, we want to identify O~(G) (as a vector space) with
O(G)[[~]] is such a way that the comultiplication in O~(G) is identified
with the natural comultiplication for O(G)[[~]] .

The normal presentations are not preferred, and hard to see how to “fix."
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Deformations and preferred deformations

U~(sl2)

Comultiplication given on generators by

∆E = E ⊗ e−~H + 1⊗ E

∆F = F ⊗ 1 + e~H ⊗ F

∆H = H ⊗ 1 + 1⊗ H

multiplication described by relations like

EF − FE =
e~H − e−~H

e~ − e−~
.

The ~ here makes it pretty non-preferred...this is fixed in CP for sl2, but only
recently by Appel and Gautam in sln, and not in other cases at all.
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Deformations and preferred deformations

O~(SL2)

Undeformed

Algebra is commutative algebra in the entries a, b, c, d of
(

a b
c d

)
Coproduct is defined by ∆(f )(M,N) = f (MN).
For generators,

∆

([
a b
c d

])
=

[
a b
c d

]
⊗
[

a b
c d

]
=

[
a⊗ a + b⊗ c a⊗ b + b⊗ d
c⊗ a + d ⊗ c c⊗ b + d ⊗ d

]
Deformed:

Commutativity relations become (q = e~)

ab = qba, ac = qca, bd = qdb, cd = qdc,

bc = cb, ad − da = (q− q−1)bc.

Comult unchanged on generators, but in higher degree is confusing. e.g.

∆(a2) = a2 ⊗ a2 + ab⊗ ac + ba⊗ ca + b2 ⊗ c2

= a2 ⊗ a2 + (1 + q−2)ab⊗ bc + b2 ⊗ c2.
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Peter Weyl basis and how to use it in a deformation

Peter-Weyl

Usually a statement about harmonic analysis, we need need simple
version:

O(G) ' ⊕λEnd(Vλ)∗

where the isomorphism is as coalgebras.
Since the coalgebra structure does not deform, as coalgebras,

O~(G) ' ⊕λEndC[[~]](Vλ)∗

To get a preferred deformation, we will understand multiplication in this
context! First in an undeformed way.
Given a ∈ End(Vλ)∗, b ∈ End(Vµ)∗, ab should be

a⊗ b ∈ End(Vλ ⊗ Vµ)∗ ' End(Vλ)∗ ⊗ End(Vµ)∗.

This is a fine element of O(G) (since G maps to End(Vλ ⊗ Vµ)), but not
expressed in ⊕λEnd(Vλ)∗.
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Peter Weyl basis and how to use it in a deformation

In coordinates

EndVλ = Vλ ⊗ V∗λ, so (EndVλ)∗ = V∗λ ⊗ Vλ.
There is a basis of matrix elements, Y∗ ⊗ X, for X,Y∗ in dual bases for
Vλ,V∗λ. This acts on g ∈ G as Y∗(g(X)).
Need to express the function defined by

(Y∗1 ⊗ X1)⊗ (Y∗2 ⊗ X2) ∈ End(Vλ)∗ ⊗ End(Vµ)∗

as a combinations of matrix elements elements of Vν’s. Same as
(Y∗1 ⊗ Y∗2 )⊗ (X1 ⊗ X2) ∈ End(Vλ ⊗ Vµ)∗

Will need to decompose Vλ ⊗ Vµ into irreducibles, and express X1 ⊗ X2
as a sum of elements of these. Similarly for Y∗1 ⊗ Y∗2 .
For all ν, fix a basis of embeddings ψν1 , . . . , ψ

ν
cν of Vν in Vλ ⊗ Vµ. Then,

X1 ⊗ X2 =

(
λ µ ν
X1 X2 X3

)
k
ψk(X3),

where these are the “3j" symbols.
Similarly, there are dual 3j symbols.
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Peter Weyl basis and how to use it in a deformation

Structure constants

If f = Y∗1 ⊗ X1, g = Y∗2 ⊗ X2,

fg =
∑
ν∈P+

X3,Y3∈Bν

 ∑
1≤k≤cνλ,µ

(
λ µ ν
Y∗1 Y∗2 Y∗3

)
k

(
λ µ ν
X1 X2 X3

)
k

Y∗3 ⊗ X3.
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Peter Weyl basis and how to use it in a deformation

Deforming

We think of Vλ as being a representation of U(g), not G, then deform to
rep of U~(g),

3j symbols can be defined just fine over C[[~]], and this all deforms.
What you need is:

A basis for each Vλ over C[[~]], which specializes to a basis at ~ = 0.
A basis for each space of embeddings Vν ↪→ Vλ ⊗ Vµ over C[[~]], which
specializes to a basis at ~ = 0.

The set of matrix elements Y∗ ⊗ X for X ∈ Bλ,Y∗ ∈ B∗λ is a basis for
O(G), and under deformation the coproduct is unchanged. It is
preferred!

Difficulty of multiplication includes calculating a lot of quantum 3j
symbols...ok, so there is a cost.
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Relation to Schur-Weyl duality

For those who like Schur-Weyl duality

If the category of representations is generated by a single nice V , there is
another natural realization of O: all functions can be realized in

⊕nEnd(V⊗n)∗

Actually this is too big, the same functions are counted many times. But
for (polynomial representations of) GLk, we have something nice:

V⊗n = ⊕λVλ ⊗Wλ,

where Wλ range over certain irreps of Sn. Then

O(Mk×k) = ⊕n(EndSn(V⊗n))∗

The construction works in this context, and recovers the preferred
deformation of Mk×k (and with extra work GLk,SLk) studied by
Giaquinto-Gerstenhaber, Giaquinto, Schack around 1992, which was
developed in a very Schure-Weyl dual way.
Get a slightly different basis, essentially rescaled by dim Wλ, which
slightly changes structure constants.
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Relation to Schur-Weyl duality

Thanks for listening!!!!!!!!
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