Peter-Weyl bases, preferred deformations, and Schur-Weyl duality

Anthony Giaquinto, Alex Gilman and Peter Tingley

Loyola University Chicago

AMS sectional, Madison WI
Sept 14-15, 2019

Outline

(1) Deformations and preferred deformations
(2) Peter Weyl basis and how to use it in a deformation
(3) Relation to Schur-Weyl duality

Deformations

Definition

\mathcal{A} an algebraic thing over a field \mathbb{C}. A (formal) deformation of \mathcal{A} is the same sort of algebraic thing over $\mathbb{C}[[\hbar]]$ which becomes \mathcal{A} when \hbar is set to 0 .

- For us, algebraic thing will be a bialgebra, so \mathcal{A} has multiplication μ and comultiplication Δ (and unit and counit I guess).
- The deformed version in \mathcal{A}_{\hbar} look like
- $\mu_{\hbar}(a, b)=\mu_{0}(a, b)+\hbar \mu_{1}(a, b)+\hbar^{2} \mu_{2}(a, b)+\cdots$
- $\Delta_{\hbar}(a)=\Delta_{0}(a)+\hbar \Delta_{1}(a)+h^{2} \Delta_{2}(a)+\cdots$
where μ_{0}, Δ_{0} are the original multiplication and comultiplication.

Definition

Two deformations \mathcal{A}_{\hbar} and $\mathcal{A}^{\prime}{ }_{\hbar}$ are equivalent if they are isomorphic (as bialgebras), using an isomorphism which is the identity at $\hbar=0$ (i.e. becomes the identity on $\mathcal{A}[[\hbar]] / \hbar \mathcal{A}[[\hbar]]$).

Cases of $U_{\hbar}(\mathfrak{g})$ and $\mathcal{O}_{\hbar}(G)$

- In fact, we only really work with $U_{\hbar}(\mathfrak{g})$ and $\mathcal{O}_{\hbar}(G)$.
- $U_{\hbar}(\mathfrak{g})$ is known to be a trivial deformation of the algebra structure, meaning it is equivalent to a deformation where multiplication is unchanged.
- Similarly, $\mathcal{O}_{\hbar}(G)$ is a trivial deformation of the co-algebra structure.
- The question of a preferred deformation/preferred presentation it to realize these in such a way that mult/comult is literally unchanged.
- Kind of equivalently, we want to identify $\mathcal{O}_{\hbar}(G)$ (as a vector space) with $\mathcal{O}(G)[[\hbar]]$ is such a way that the comultiplication in $\mathcal{O}_{\hbar}(G)$ is identified with the natural comultiplication for $\mathcal{O}(G)[[\hbar]]$.
- The normal presentations are not preferred, and hard to see how to "fix."

$U_{\hbar}\left(\mathfrak{s l}_{2}\right)$

Comultiplication given on generators by

$$
\begin{aligned}
& \Delta E=E \otimes e^{-\hbar H}+1 \otimes E \\
& \Delta F=F \otimes 1+e^{\hbar H} \otimes F \\
& \Delta H=H \otimes 1+1 \otimes H
\end{aligned}
$$

multiplication described by relations like

$$
E F-F E=\frac{e^{\hbar H}-e^{-\hbar H}}{e^{\hbar}-e^{-\hbar}}
$$

The \hbar here makes it pretty non-preferred...this is fixed in CP for $\mathfrak{s l}_{2}$, but only recently by Appel and Gautam in $\mathfrak{s l}_{n}$, and not in other cases at all.

$\mathcal{O}_{\hbar}\left(\mathrm{SL}_{2}\right)$

Undeformed

- Algebra is commutative algebra in the entries a, b, c, d of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
- Coproduct is defined by $\Delta(f)(M, N)=f(M N)$.
- For generators,

$$
\Delta\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \otimes\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
a \otimes a+b \otimes c & a \otimes b+b \otimes d \\
c \otimes a+d \otimes c & c \otimes b+d \otimes d
\end{array}\right]
$$

Deformed:

- Commutativity relations become ($q=e^{\hbar}$)

$$
\begin{gathered}
a b=q b a, \quad a c=q c a, \quad b d=q d b, \quad c d=q d c \\
b c=c b, \quad a d-d a=\left(q-q^{-1}\right) b c
\end{gathered}
$$

- Comult unchanged on generators, but in higher degree is confusing. e.g.

$$
\begin{aligned}
\Delta\left(a^{2}\right) & =a^{2} \otimes a^{2}+a b \otimes a c+b a \otimes c a+b^{2} \otimes c^{2} \\
& =a^{2} \otimes a^{2}+\left(1+q^{-2}\right) a b \otimes b c+b^{2} \otimes c^{2}
\end{aligned}
$$

Peter-Weyl

- Usually a statement about harmonic analysis, we need need simple version:

$$
\mathcal{O}(G) \simeq \oplus_{\lambda} \operatorname{End}\left(V_{\lambda}\right)^{*}
$$

where the isomorphism is as coalgebras.

- Since the coalgebra structure does not deform, as coalgebras,

$$
\mathcal{O}_{\hbar}(G) \simeq \oplus_{\lambda} \operatorname{End}_{\mathbb{C}[[\hbar]]}\left(V_{\lambda}\right)^{*}
$$

- To get a preferred deformation, we will understand multiplication in this context! First in an undeformed way.
- Given $a \in \operatorname{End}\left(V_{\lambda}\right)^{*}, b \in \operatorname{End}\left(V_{\mu}\right)^{*}, a b$ should be

$$
a \otimes b \in \operatorname{End}\left(V_{\lambda} \otimes V_{\mu}\right)^{*} \simeq \operatorname{End}\left(V_{\lambda}\right)^{*} \otimes \operatorname{End}\left(V_{\mu}\right)^{*}
$$

- This is a fine element of $\mathcal{O}(G)$ (since G maps to $\operatorname{End}\left(V_{\lambda} \otimes V_{\mu}\right)$), but not expressed in $\oplus_{\lambda} \operatorname{End}\left(V_{\lambda}\right)^{*}$.

In coordinates

- $\operatorname{End} V_{\lambda}=V_{\lambda} \otimes V_{\lambda}^{*}$, so $\left(\operatorname{End} V_{\lambda}\right)^{*}=V_{\lambda}^{*} \otimes V_{\lambda}$.
- There is a basis of matrix elements, $Y^{*} \otimes X$, for X, Y^{*} in dual bases for $V_{\lambda}, V_{\lambda}^{*}$. This acts on $g \in G$ as $Y^{*}(g(X))$.
- Need to express the function defined by

$$
\left(Y_{1}^{*} \otimes X_{1}\right) \otimes\left(Y_{2}^{*} \otimes X_{2}\right) \in \operatorname{End}\left(V_{\lambda}\right)^{*} \otimes \operatorname{End}\left(V_{\mu}\right)^{*}
$$

as a combinations of matrix elements elements of V_{ν} 's. Same as

$$
\left(Y_{1}^{*} \otimes Y_{2}^{*}\right) \otimes\left(X_{1} \otimes X_{2}\right) \in \operatorname{End}\left(V_{\lambda} \otimes V_{\mu}\right)^{*}
$$

- Will need to decompose $V_{\lambda} \otimes V_{\mu}$ into irreducibles, and express $X_{1} \otimes X_{2}$ as a sum of elements of these. Similarly for $Y_{1}^{*} \otimes Y_{2}^{*}$.
- For all ν, fix a basis of embeddings $\psi_{1}^{\nu}, \ldots, \psi_{c^{\nu}}^{\nu}$ of V_{ν} in $V_{\lambda} \otimes V_{\mu}$. Then,

$$
X_{1} \otimes X_{2}=\left(\begin{array}{ccc}
\lambda & \mu & \nu \\
X_{1} & X_{2} & X_{3}
\end{array}\right)_{k} \psi_{k}\left(X_{3}\right)
$$

where these are the " 3 j " symbols.

- Similarly, there are dual 3 j symbols.

Structure constants

$$
\text { If } f=Y_{1}^{*} \otimes X_{1}, g=Y_{2}^{*} \otimes X_{2},
$$

$$
f g=\sum_{\substack{\nu \in P_{+}+B_{b} \\
X_{3}, Y_{3} \in k \leq c_{\lambda, \mu}^{\nu}}} \overline{\left.\sum_{\left(\begin{array}{ccc}
\lambda & \mu & \nu \\
Y_{1}^{*} & Y_{2}^{*} & Y_{3}^{*}
\end{array}\right)_{k}}\left(\begin{array}{ccc}
\lambda & \mu & \nu \\
X_{1} & X_{2} & X_{3}
\end{array}\right)_{k}\right] Y_{3}^{*} \otimes X_{3} .}
$$

Deforming

- We think of V_{λ} as being a representation of $U(\mathfrak{g})$, not G, then deform to rep of $U_{\hbar}(\mathfrak{g})$,
- 3 j symbols can be defined just fine over $\mathbb{C}[[\hbar]]$, and this all deforms.
- What you need is:
- A basis for each V_{λ} over $\mathbb{C}[[\hbar]]$, which specializes to a basis at $\hbar=0$.
- A basis for each space of embeddings $V_{\nu} \hookrightarrow V_{\lambda} \otimes V_{\mu}$ over $\left.\mathbb{C}[\hbar \hbar]\right]$, which specializes to a basis at $\hbar=0$.
- The set of matrix elements $Y^{*} \otimes X$ for $X \in B_{\lambda}, Y^{*} \in B_{\lambda}^{*}$ is a basis for $\mathcal{O}(G)$, and under deformation the coproduct is unchanged. It is preferred!
- Difficulty of multiplication includes calculating a lot of quantum 3 j symbols...ok, so there is a cost.

For those who like Schur-Weyl duality

- If the category of representations is generated by a single nice V, there is another natural realization of \mathcal{O} : all functions can be realized in

$$
\oplus_{n} \operatorname{End}\left(V^{\otimes n}\right)^{*}
$$

- Actually this is too big, the same functions are counted many times. But for (polynomial representations of) GL_{k}, we have something nice:

$$
V^{\otimes n}=\oplus_{\lambda} V_{\lambda} \otimes W_{\lambda},
$$

where W_{λ} range over certain irreps of S_{n}. Then

$$
\mathcal{O}\left(M_{k \times k}\right)=\oplus_{n}\left(\operatorname{End}_{S_{n}}\left(V^{\otimes n}\right)\right)^{*}
$$

- The construction works in this context, and recovers the preferred deformation of $M_{k \times k}$ (and with extra work $\mathrm{GL}_{k}, \mathrm{SL}_{k}$) studied by Giaquinto-Gerstenhaber, Giaquinto, Schack around 1992, which was developed in a very Schure-Weyl dual way.
- Get a slightly different basis, essentially rescaled by $\operatorname{dim} W_{\lambda}$, which slightly changes structure constants.

Thanks for listening!!!!!!!!

