Root multiplicities from quiver varieties

Peter Tingley with appendix coauthored by Colin Williams

Loyola University Chicago

AMS sectional, Madison WI Sept 14-15, 2019

Outline

Background

- What are Kac-Moody algebras and root multiplicities?
- What are Crystals?
- What are quiver varieties and how do they help?

Our method/Conjecture

- Exact Data
- Heuristics

Background What are Kac-Moody algebras and root multiplicities?

What are Kac-Moody algebras?

• \$l3:

A D b A A b A

∃ >

• \$l3:

$$\left(\begin{array}{cccc} 0 & 0 & * \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

$$\left(\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & * \\ 0 & 0 & 0 \end{array}\right)$$

$$\left(\begin{array}{cccc} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{array}\right)$$

$$\left(\begin{array}{cccc} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{array}\right)$$

$$\left(\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

$$\left(\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

$$\left(\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

$$\left(\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

A D b A A b A

∃ >

Background What are Kac-Moody algebras and root multiplicities?

1

1

What are Kac-Moody algebras?

1

1

• \$l3:

1

2

Background What are Kac-Moody algebras and root multiplicities?

What are Kac-Moody algebras?

• $\widehat{\mathfrak{sl}}_2$:

• The task is to get a good formula for these numbers.

- The task is to get a good formula for these numbers.
- Formulae exist (Berman-Moody and Peterson), based on Weyl denominator identity. So, the point is "good," or maybe "combinatorial"

- The task is to get a good formula for these numbers.
- Formulae exist (Berman-Moody and Peterson), based on Weyl denominator identity. So, the point is "good," or maybe "combinatorial"
- We mostly consider the simplest hyperbolic case, and there there are combinatorial formulae (Kang-Melville, Carbone-Freyn-Lee, Kang-Lee-Lee), which use similar combinatorial objects to what we use...but there seem to be serious differences in the details and methods.

<ロト < 四ト < 三ト < 三ト

• Every representation is a quotient of $U^{-}(\mathfrak{g})$, the associative algebra generated by the negative root vectors.

- Every representation is a quotient of $U^{-}(\mathfrak{g})$, the associative algebra generated by the negative root vectors.
- You can make a colored graph, where nodes are basis vectors, and arrows approximate actions of Chevalley generators.

- Every representation is a quotient of $U^{-}(\mathfrak{g})$, the associative algebra generated by the negative root vectors.
- You can make a colored graph, where nodes are basis vectors, and arrows approximate actions of Chevalley generators.
- It has a subgraph for every highest weight integrable representation...but right now we don't really care about that.

What are Crystals?

Examples of infinity crystals

A D b A A b A

-

What are Crystals?

What are Crystals?

Examples of infinity crystals

• We start by counting these numbers, because crystals can help.

- We start by counting these numbers, because crystals can help.
- These are given by Kostant partitions, so this is highly related.

How do quiver varieties help?

- Preprojective algebra is path algebra mod a generic quadratic relation.
- Elements of $B(\infty)$ correspond to irreducible components of the variety of nilpotent representations of this algebra.
- These irreducible components can be identified by the form of the Harder-Narasimhan filtration of their points (work with Kamnitzer Baumann).
- Note: only two irreps, Which we call **0** and **1**. We will identify representations (or families of representations) by a socle filtration.

Example

• Here are the HN filtrations of the irreducible components of the variety of irreducible representations on $\mathbb{C}^2 + \mathbb{C}^3$:

- Correctly predicts that $B(\infty)$ has 10 elements in this degree.
- There are exactly two with a trivial filtration, which corresponds to the root multiplicity of $2\alpha_0 + 3\alpha_1$ being 2.

<ロト < 四ト < 三ト < 三ト

We can only deal with roots β such that β is not a multiple of a smaller root (e.g. aα₀ + bα₁ with gcd(a, b) = 1).

- We can only deal with roots β such that β is not a multiple of a smaller root (e.g. aα₀ + bα₁ with gcd(a, b) = 1).
- Then the root multiplicity is the number of stable irreducible components

- We can only deal with roots β such that β is not a multiple of a smaller root (e.g. aα₀ + bα₁ with gcd(a, b) = 1).
- Then the root multiplicity is the number of stable irreducible components
- Stable components are labeled by string data/socle filtrations.

- We can only deal with roots β such that β is not a multiple of a smaller root (e.g. aα₀ + bα₁ with gcd(a, b) = 1).
- Then the root multiplicity is the number of stable irreducible components
- Stable components are labeled by string data/socle filtrations.

$$\begin{array}{c} 0 \\ 1 \\ 0 \\ 11 \end{array}$$
 11010

- Thus we need to count words subject to two conditions:
 - The result is a valid string data/socle filtration.
 - The corresponding component is stable.

- We can only deal with roots β such that β is not a multiple of a smaller root (e.g. aα₀ + bα₁ with gcd(a, b) = 1).
- Then the root multiplicity is the number of stable irreducible components
- Stable components are labeled by string data/socle filtrations.

- Thus we need to count words subject to two conditions:
 - The result is a valid string data/socle filtration.
 - The corresponding component is stable.
- This idea was partly suggested to me by Alex Feingold.

Translating conditions to combinatorics

- The conditions on the previous page aren't very tractable.
- We will translate them into
 - two combinatorial conditions
 - An error term.
- In fact, we can start adding more combinatorial conditions and get better estimates, but I have no great hope of describing them all.

<ロト < 四ト < 三ト < 三ト

• 10110 is not allowed, because the red submodule violates stability.

• 10110 is not allowed, because the red submodule violates stability.

11010

• The path must be a (rational) Dyck path.

• 10110 is not allowed, because the red submodule violates stability.

- The path must be a (rational) Dyck path.
- If there are a_k i's followed by a_{k+1} j's, then $\frac{a_{k+1}}{a_k} < \frac{\sqrt{5}+3}{2}$.

• 10110 is not allowed, because the red submodule violates stability.

- The path must be a (rational) Dyck path.
- If there are a_k i's followed by a_{k+1} j's, then $\frac{a_{k+1}}{a_k} < \frac{\sqrt{5+3}}{2}$.
- e.g. $1^{8}0^{2}1^{3}0^{10}$ is not allowed because no module has graded socle filtration $1^{3}0^{10}$, so this is not a possible subquotient.

• 10110 is not allowed, because the red submodule violates stability.

- The path must be a (rational) Dyck path.
- If there are a_k i's followed by a_{k+1} j's, then $\frac{a_{k+1}}{a_k} < \frac{\sqrt{5+3}}{2}$.
- e.g. $1^{8}0^{2}1^{3}0^{10}$ is not allowed because no module has graded socle filtration $1^{3}0^{10}$, so this is not a possible subquotient.
- $1^{8}0^{4}1^{3}0^{8}$ is also not allowed, as forces a stability violation.

• 10110 is not allowed, because the red submodule violates stability.

- The path must be a (rational) Dyck path.
- If there are a_k i's followed by a_{k+1} j's, then $\frac{a_{k+1}}{a_k} < \frac{\sqrt{5}+3}{2}$.
- e.g. $1^{8}0^{2}1^{3}0^{10}$ is not allowed because no module has graded socle filtration $1^{3}0^{10}$, so this is not a possible subquotient.
- $1^{8}0^{4}1^{3}0^{8}$ is also not allowed, as forces a stability violation.
- For string data $(a_1, a_2, \ldots, a_{2k})$, for all $0 \le x < y < k$,

$$\frac{a_1 + \dots + a_{2x-1} + (a_{2x+2} + \dots + a_{2y}) - a_{2x+3} - \dots - a_{2y+1}}{a_2 + \dots + a_{2y}}$$

is at most the slope of the Dyck path. Rules out e.g. $1^30^21^50^5$.

• 10110 is not allowed, because the red submodule violates stability.

- The path must be a (rational) Dyck path.
- If there are a_k i's followed by a_{k+1} j's, then $\frac{a_{k+1}}{a_k} < \frac{\sqrt{5}+3}{2}$.
- e.g. $1^{8}0^{2}1^{3}0^{10}$ is not allowed because no module has graded socle filtration $1^{3}0^{10}$, so this is not a possible subquotient.
- $1^{8}0^{4}1^{3}0^{8}$ is also not allowed, as forces a stability violation.
- For string data $(a_1, a_2, \ldots, a_{2k})$, for all $0 \le x < y < k$,

$$\frac{a_1 + \dots + a_{2x-1} + (a_{2x+2} + \dots + a_{2y}) - a_{2x+3} - \dots - a_{2y+1}}{a_2 + \dots + a_{2y}}$$

is at most the slope of the Dyck path. Rules out e.g. $1^30^21^50^5$.

• Many more conditions...but they all seem to be weak:

Conjectures

-

Conjectures

Conjecture

For this rank 2 algebra, the Number of rational Dyck paths satisfying the ratio condition is a good estimate of the root multiplicity of $m\alpha_0 + n\alpha_1$ provided gcd(m, n) = 1 and $m\alpha_0 + n\alpha_1$ is far inside the imaginary cone.

Conjectures

Conjecture

For this rank 2 algebra, the Number of rational Dyck paths satisfying the ratio condition is a good estimate of the root multiplicity of $m\alpha_0 + n\alpha_1$ provided gcd(m,n) = 1 and $m\alpha_0 + n\alpha_1$ is far inside the imaginary cone.

- I hope/believe this means the number of rational Dyck paths satisfying the ratio condition for e.g. $(n + 1)\alpha_0 + n\alpha_1$ is \mathcal{O} of the correct answer. Or at least the error grows extremely slowly.
- Something similar should hold going out along any line.
- Something similar should be true in other types.

Calculated in SAGE with my student Colin Williams

Root	Estimate using	Estimate with	Actual
	only ratio	next condition	multiplicity
$15\alpha_0 + 14\alpha_1$	278335	271860	271860
$16\alpha_0 + 15\alpha_1$	837218	815215	815214
$15\alpha_0 + 16\alpha_1$	1234431	817505	815214

Our estimates are generally more accurate for roots $m\alpha_0 + n\alpha_1$ with m > n. Here is the one word we over-counted for $16\alpha_0 + 15\alpha_1$:

 $1^{10}0^31^50^{13}$.

It should be ruled out because the quotient $1^{5}0^{13}$ generates $10^{2}1^{5}0^{13}$, which has the submodule 10^{2} .

• We also estimated large root multiplicities by sampling Dyck paths, and estimating the proportion that satisfy each condition.

- We also estimated large root multiplicities by sampling Dyck paths, and estimating the proportion that satisfy each condition.
- Here are some results. Each took about 24 hours on a 2018 laptop.

Root	Paths	First	Better
	sampled	estimate	estimate
$51\alpha_0 + 50\alpha_1$	109	2.2283×10^{23}	2.0419×10^{23}
$50\alpha_0 + 51\alpha_1$	109	3.4013×10^{23}	2.0476×10^{23}

- For large k, the expected number of returns a random rational Dyck path makes to distance r from the diagonal stays around 4r + 4. Does not grow!
- Stability fails when consecutive edge lengths a_k, a_{k+1} generate a problematic submodule, but this only has "local" effect.
- You need to both be close to the boundary and close to the ratio at once....unlikely.
- I can't prove it is unlikely enough though.

Thanks for listening!!!!!!!