Root multiplicities from quiver varieties

Peter Tingley with appendix coauthored by Colin Williams

Loyola University Chicago

AMS sectional, Madison WI
Sept 14-15, 2019

Outline

(1) Background

- What are Kac-Moody algebras and root multiplicities?
- What are Crystals?
- What are quiver varieties and how do they help?
(2) Our method/Conjecture
(3) Evidence
- Exact Data
- Heuristics

What are Kac-Moody algebras?

What are Kac-Moody algebras?

- $\mathfrak{s l}_{3}$:

What are Kac-Moody algebras?

- $\mathfrak{S l}_{3}$:

$$
\begin{array}{ccc}
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & * \\
0 & 0 & 0
\end{array}\right) & \left(\begin{array}{lll}
0 & 0 & * \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
\left(\begin{array}{lll}
0 & 0 & 0 \\
* & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & \left(\begin{array}{lll}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right) \\
\\
& \left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
* & 0 & 0
\end{array}\right)
\end{array}
$$

What are Kac-Moody algebras?

- $\mathfrak{s l}_{3}$:
112
1 1
1

What are Kac-Moody algebras?

What are Kac-Moody algebras?

- $\widehat{\mathfrak{s l}}_{2}$:

	1
1	
	1
1	
	1
1	
	3
1	
	1
1	
	1
1	
-	1
:	

What are Kac-Moody algebras?

- "Fibonacci": Cartan matrix $\left(\begin{array}{rr}2 & -3 \\ -3 & 2\end{array}\right)$

1	2	9		23		23		9	2	1
		3	9	9	16	9	9	3	2	
		1	4	4	6	4	4	1		
			1	4	3	2	1	1		
				1	1	2	1			
			1	1	1					
				1	2	1				
			1	1	1	1				
			1	2	1	1	1			
		1	4	4	3	2	1			
		3	4	9	6	9	4	1		
		9		23	16	23	9	3		
										1

What are Kac-Moody algebras?

- The task is to get a good formula for these numbers.

What are Kac-Moody algebras?

- The task is to get a good formula for these numbers.
- Formulae exist (Berman-Moody and Peterson), based on Weyl denominator identity. So, the point is "good," or maybe "combinatorial"

What are Kac-Moody algebras?

- The task is to get a good formula for these numbers.
- Formulae exist (Berman-Moody and Peterson), based on Weyl denominator identity. So, the point is "good," or maybe "combinatorial"
- We mostly consider the simplest hyperbolic case, and there there are combinatorial formulae (Kang-Melville, Carbone-Freyn-Lee, Kang-Lee-Lee), which use similar combinatorial objects to what we use...but there seem to be serious differences in the details and methods.

$B(\infty)$

$B(\infty)$

- Every representation is a quotient of $U^{-}(\mathfrak{g})$, the associative algebra generated by the negative root vectors.

$B(\infty)$

- Every representation is a quotient of $U^{-}(\mathfrak{g})$, the associative algebra generated by the negative root vectors.
- You can make a colored graph, where nodes are basis vectors, and arrows approximate actions of Chevalley generators.

$B(\infty)$

- Every representation is a quotient of $U^{-}(\mathfrak{g})$, the associative algebra generated by the negative root vectors.
- You can make a colored graph, where nodes are basis vectors, and arrows approximate actions of Chevalley generators.
- It has a subgraph for every highest weight integrable representation...but right now we don't really care about that.

Examples of infinity crystals

Examples of infinity crystals

- $\mathfrak{s l}_{3}$:

Examples of infinity crystals

Examples of infinity crystals

- Hyperbolic with Cartan matrix $\left(\begin{array}{rr}2 & -3 \\ -3 & 2\end{array}\right)$

Examples of infinity crystals

- Hyperbolic with Cartan matrix $\left(\begin{array}{rr}2 & -3 \\ -3 & 2\end{array}\right)$

- We start by counting these numbers, because crystals can help.

Examples of infinity crystals

- Hyperbolic with Cartan matrix $\left(\begin{array}{rr}2 & -3 \\ -3 & 2\end{array}\right)$

- We start by counting these numbers, because crystals can help.
- These are given by Kostant partitions, so this is highly related.

How do quiver varieties help?

- Preprojective algebra is path algebra mod a generic quadratic relation.
- Elements of $B(\infty)$ correspond to irreducible components of the variety of nilpotent representations of this algebra.
- These irreducible components can be identified by the form of the Harder-Narasimhan filtration of their points (work with Kamnitzer Baumann).
- Note: only two irreps, Which we call $\mathbf{0}$ and $\mathbf{1}$. We will identify representations (or families of representations) by a socle filtration.

Example

- Here are the HN filtrations of the irreducible components of the variety of irreducible representations on $\mathbb{C}^{2}+\mathbb{C}^{3}$:

$$
\begin{array}{ccccc}
& \frac{1 \oplus 1}{0} & \frac{1}{0} & & \\
\frac{1 \oplus 1 \oplus}{0 \oplus 0} & \frac{1}{0} & \frac{11}{0} & \frac{111}{0} & \frac{11}{00} \\
& & & & 1 \\
0 & \frac{1}{0} & & & \\
\frac{0}{11} & 1 & \frac{1}{1} & & 0 \\
0 & 0 & 00 & 00 & 0 \\
1 & 1 & 11 & 111 & 11
\end{array}
$$

- Correctly predicts that $B(\infty)$ has 10 elements in this degree.
- There are exactly two with a trivial filtration, which corresponds to the root multiplicity of $2 \alpha_{0}+3 \alpha_{1}$ being 2 .

Our method

Our method

- We can only deal with roots β such that β is not a multiple of a smaller root (e.g. $a \alpha_{0}+b \alpha_{1}$ with $\operatorname{gcd}(a, b)=1$).

Our method

- We can only deal with roots β such that β is not a multiple of a smaller $\operatorname{root}\left(\mathrm{e}\right.$.g. $a \alpha_{0}+b \alpha_{1}$ with $\operatorname{gcd}(a, b)=1$).
- Then the root multiplicity is the number of stable irreducible components

Our method

- We can only deal with roots β such that β is not a multiple of a smaller $\operatorname{root}\left(\mathrm{e}\right.$.g. $a \alpha_{0}+b \alpha_{1}$ with $\operatorname{gcd}(a, b)=1$).
- Then the root multiplicity is the number of stable irreducible components
- Stable components are labeled by string data/socle filtrations.

Our method

- We can only deal with roots β such that β is not a multiple of a smaller root (e.g. $a \alpha_{0}+b \alpha_{1}$ with $\operatorname{gcd}(a, b)=1$).
- Then the root multiplicity is the number of stable irreducible components
- Stable components are labeled by string data/socle filtrations.

- Thus we need to count words subject to two conditions:
- The result is a valid string data/socle filtration.
- The corresponding component is stable.

Our method

- We can only deal with roots β such that β is not a multiple of a smaller root (e.g. $a \alpha_{0}+b \alpha_{1}$ with $\operatorname{gcd}(a, b)=1$).
- Then the root multiplicity is the number of stable irreducible components
- Stable components are labeled by string data/socle filtrations.
- Thus we need to count words subject to two conditions:
- The result is a valid string data/socle filtration.
- The corresponding component is stable.
- This idea was partly suggested to me by Alex Feingold.

Translating conditions to combinatorics

- The conditions on the previous page aren't very tractable.
- We will translate them into
- two combinatorial conditions
- An error term.
- In fact, we can start adding more combinatorial conditions and get better estimates, but I have no great hope of describing them all.

Conditions

Conditions

- 10110 is not allowed, because the red submodule violates stability.

Conditions

- 10110 is not allowed, because the red submodule violates stability.
- The path must be a (rational) Dyck path.

Conditions

- 10110 is not allowed, because the red submodule violates stability.

11010

- The path must be a (rational) Dyck path.

- If there are a_{k} i's followed by $a_{k+1} \mathrm{j}$'s, then $\frac{a_{k+1}}{a_{k}}<\frac{\sqrt{5}+3}{2}$.

Conditions

- 10110 is not allowed, because the red submodule violates stability.
- The path must be a (rational) Dyck path.

- If there are a_{k} i's followed by $a_{k+1} \mathrm{j}$'s, then $\frac{a_{k+1}}{a_{k}}<\frac{\sqrt{5}+3}{2}$.
- e.g. $1^{8} 0^{2} 1^{3} 0^{10}$ is not allowed because no module has graded socle filtration $1^{3} 0^{10}$, so this is not a possible subquotient.

Conditions

- 10110 is not allowed, because the red submodule violates stability.

11010

- The path must be a (rational) Dyck path.

- If there are a_{k} i's followed by $a_{k+1} \mathrm{j}$'s, then $\frac{a_{k+1}}{a_{k}}<\frac{\sqrt{5}+3}{2}$.
- e.g. $1^{8} 0^{2} 1^{3} 0^{10}$ is not allowed because no module has graded socle filtration $1^{3} 0^{10}$, so this is not a possible subquotient.
- $1^{8} 0^{4} 1^{3} 0^{8}$ is also not allowed, as forces a stability violation.

Conditions

- 10110 is not allowed, because the red submodule violates stability.

11010

- The path must be a (rational) Dyck path.

- If there are a_{k} i's followed by $a_{k+1} \mathrm{j}$'s, then $\frac{a_{k+1}}{a_{k}}<\frac{\sqrt{5}+3}{2}$.
- e.g. $1^{8} 0^{2} 1^{3} 0^{10}$ is not allowed because no module has graded socle filtration $1^{3} 0^{10}$, so this is not a possible subquotient.
- $1^{8} 0^{4} 1^{3} 0^{8}$ is also not allowed, as forces a stability violation.
- For string data $\left(a_{1}, a_{2}, \ldots, a_{2 k}\right)$, for all $0 \leq x<y<k$,

$$
\frac{a_{1}+\cdots+a_{2 x-1}+\left(a_{2 x+2}+\cdots+a_{2 y}\right)-a_{2 x+3}-\cdots-a_{2 y+1}}{a_{2}+\cdots+a_{2 y}}
$$

is at most the slope of the Dyck path. Rules out e.g. $1^{3} 0^{2} 1^{5} 0^{5}$.

Conditions

- 10110 is not allowed, because the red submodule violates stability.

11010

- The path must be a (rational) Dyck path.

- If there are a_{k} i's followed by $a_{k+1} \mathrm{j}$'s, then $\frac{a_{k+1}}{a_{k}}<\frac{\sqrt{5}+3}{2}$.
- e.g. $1^{8} 0^{2} 1^{3} 0^{10}$ is not allowed because no module has graded socle filtration $1^{3} 0^{10}$, so this is not a possible subquotient.
- $1^{8} 0^{4} 1^{3} 0^{8}$ is also not allowed, as forces a stability violation.
- For string data $\left(a_{1}, a_{2}, \ldots, a_{2 k}\right)$, for all $0 \leq x<y<k$,

$$
\frac{a_{1}+\cdots+a_{2 x-1}+\left(a_{2 x+2}+\cdots+a_{2 y}\right)-a_{2 x+3}-\cdots-a_{2 y+1}}{a_{2}+\cdots+a_{2 y}}
$$

is at most the slope of the Dyck path. Rules out e.g. $1^{3} 0^{2} 1^{5} 0^{5}$.

- Many more conditions...but they all seem to be weak:

Conjectures

Conjectures

Conjecture

For this rank 2 algebra, the Number of rational Dyck paths satisfying the ratio condition is a good estimate of the root multiplicity of $m \alpha_{0}+n \alpha_{1}$ provided $\operatorname{gcd}(m, n)=1$ and $m \alpha_{0}+n \alpha_{1}$ is far inside the imaginary cone.

Conjectures

Conjecture

For this rank 2 algebra, the Number of rational Dyck paths satisfying the ratio condition is a good estimate of the root multiplicity of $m \alpha_{0}+n \alpha_{1}$ provided $\operatorname{gcd}(m, n)=1$ and $m \alpha_{0}+n \alpha_{1}$ is far inside the imaginary cone.

- I hope/believe this means the number of rational Dyck paths satisfying the ratio condition for e.g. $(n+1) \alpha_{0}+n \alpha_{1}$ is \mathcal{O} of the correct answer. Or at least the error grows extremely slowly.
- Something similar should hold going out along any line.
- Something similar should be true in other types.

Data

Calculated in SAGE with my student Colin Williams

Root	Estimate using only ratio	Estimate with next condition	Actual multiplicity
$15 \alpha_{0}+14 \alpha_{1}$	278335	271860	271860
$16 \alpha_{0}+15 \alpha_{1}$	837218	815215	815214
$15 \alpha_{0}+16 \alpha_{1}$	1234431	817505	815214

Our estimates are generally more accurate for roots $m \alpha_{0}+n \alpha_{1}$ with $m>n$. Here is the one word we over-counted for $16 \alpha_{0}+15 \alpha_{1}$:

$$
1^{10} 0^{3} 1^{5} 0^{13}
$$

It should be ruled out because the quotient $1^{5} 0^{13}$ generates $10^{2} 1^{5} 0^{13}$, which has the submodule 10^{2}.

Monte-Carlo data

- We also estimated large root multiplicities by sampling Dyck paths, and estimating the proportion that satisfy each condition.

Monte-Carlo data

- We also estimated large root multiplicities by sampling Dyck paths, and estimating the proportion that satisfy each condition.
- Here are some results. Each took about 24 hours on a 2018 laptop.

Root	Paths sampled	First estimate	Better estimate
$51 \alpha_{0}+50 \alpha_{1}$	10^{9}	2.2283×10^{23}	2.0419×10^{23}
$50 \alpha_{0}+51 \alpha_{1}$	10^{9}	3.4013×10^{23}	2.0476×10^{23}

Heuristics

- For large k, the expected number of returns a random rational Dyck path makes to distance r from the diagonal stays around $4 r+4$. Does not grow!
- Stability fails when consecutive edge lengths a_{k}, a_{k+1} generate a problematic submodule, but this only has "local" effect.
- You need to both be close to the boundary and close to the ratio at once....unlikely.
- I can't prove it is unlikely enough though.

Thanks for listening!!!!!!!!

