
LECTURE 10: HIGHEST WEIGHT CRYSTALS FROM QUIVER VARIETIES

STEVEN SAM AND PETER TINGLEY

We saw in lectures 7 and 8 how Lusztig’s nilpotent variety can be used to realize U−(g) and
the crystal B(∞). Last week we saw how to use quiver grassmannians to realize the highest
weight modules V (λ) as a quotient of U−(g), and the same construction realizes the crystals B(λ).
This week we discuss a more standard approach to realizing V (λ) and B(λ), namely we will use
Nakajima’s quiver varieties. The two approaches essentially equivalent since the lagrangian quiver
variety L(v,W ) whose irreducible components will index B(λ) in todays story is actually isomorphic
to a quiver grassmannian we used last week (see [L98, ST11, S10]). However, Nakajima’s approach
has one significant advantage, in that L(v,W ) is realized as a subvariety of a smooth variety
M(v,W ) (and in fcat, is a lagrangiann subvariety with respect to a certain symplectic form).

In the second half of this lecture we discuss some methods of extracting known combinatorics
(such as Young tableau) from the realization of B(λ) and B(∞) using quiver varieties.

1. Nakajima’s construction

Fix a Dynkin diagram Γ, and letQ = (I,H) be its doubled quiver, with chosen orientation
Ω ⊂ H. Add “shadow” vertices, one for each vertex of Q, which in examples are shown below the
original vertices. For each shadow vertex, add one arrow coming from the original vertex. This
larger quiver will be denoted Q′ = (I ′, H ′). Orient the new edges towards from original vertices to
get orientation Ω′ ⊂ H ′, so that the red edges are negatively oriented. For example, the A4 quiver
becomes:

(1.1)
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Let V and W be I-graded vector spaces. Let M(V,W ) be the variety of representations of Q′

on V ⊕W (V corresponds to the original vertices and W to the shadow vertices). Consider the
symplectic form on M defined as in the case of the construction of Lusztig’s nilpotent quiver variety,
but for Q′. Thus if p = (pa) and q = (qa) are two representations of Q′,

(p, q) =
∑
a∈Ω′

trace(ε(a)qapa).

In order to distinguish the different arrows, we denote the horizontal arrows by x the maps
corresponding to the down arrows by s, the maps corresponding to the up arrows by t. Thus
a representation of Q′ will be denoted by a triple (x, s, t) where x is a representation of Q, and
s : V →W and t : W → V are maps of I-graded vector spaces.
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Let GL(V ) =
∏

i∈I GL(vi) which acts on M(V,W ) as usual. Note that we do not include the
GL(Wi). The moment map µ : M(V,W )→ ⊕gl(Vi) is

µ(x, s, t) =
∑
i∈I

tisi +
∑
a:i→j

ε(a)xaxa

 .

Definition 1.2. M(v,W ) = µ−1(0)s/GL(v) where

µ−1(0)s = {(x, s, t) ∈ µ−1(0) | no nontrivial x-invariant subspaces in ker t}.

�

Remark 1.3. Since we mod out by GL(v), M(v,W ) does not depend on the choice of vector space
V , but only the dimension. That is why we write v in lower case. Up to isomorphism it also only
depends on the dimension of W , but the isomorphism is non-canonical. For that reason I’m being
pedantic, and recording the actual vector space W .

Remark 1.4. One important point is tha the action of GL(v) on µ−1(0)s is free. However, µ−1(0)s

is strictly smaller the the set of points in µ−1(0) which have trivial stabilizer.

M(v,W ) is a symplectic quotient (Marsden-Weinstein reduction, see [MW74] of M(V,W )), so
in particular:

Theorem 1.5. (·, ·) descends to a symplectic form on M(v,W ).

Definition 1.6. L(V,W ) = {(x, s, 0) ∈M(V,W ) | x is nilpotent} �

Theorem 1.7. L(v,W ) is a Lagrangian subvariety of M(V,W ). In particular, it is of pure dimen-
sion

dimL(V,W ) = (α, λ)− (α, α)

2

where α =
∑

i viαi and λ =
∑

iwiωi.

Stability is an open condition, so in particular:

Lemma 1.8. For Z ∈ Irr Λ(v), then either

(i) For generic x ∈ Z, and generic s, (x, s, 0) is stable, or
(ii) (x, s, 0) is never stable for any x ∈ Z or any s.

The following combines results of Nakajima [Nak94, Nak98] and Saito [Sai02].

Theorem 1.9. Assume we are in condition (i) from Theorem 1.8. Then

(i) {[x, s, 0] | x ∈ Z, (x, s, 0) stable} is an irreducible component of L(v, w).
(ii) All irreducible components of L(v,W ) are of this form.

(iii)
∐

v IrrL(v, w) = B(λ) ⊂ B(∞), where as in Lecture 8 B(∞) is identified with
∐

v Irr Λ(v).

The action of the crystal operators fi on
∐

v IrrL(v,W ) is then inherited from the action on∐
v Λ(v), where fi(Z) is set to 0 if it lands in case (ii) of Theorem 1.8.

2. Extracting combinatorics

We would like to understand how the realization on B(λ) in terms of quiver varieties relates to
the combinatorial models we’ve already considered. There are (at least) two fruitful approaches to
this question.
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2.1. Conormal bundle approach. The following is explained in [Sav06]. Fix Γ of finite type.
Consider the “single” quiver QΩ = (I,Ω), which is just an orientation of the Dynkin diagram Γ. In
Example (1.1), this is the quiver obtained by deleting the “shadow” vertices, all edges to and from
those vertices, and all red edges. The key observation that there is a bijection

{isomorphism classes of dimension v representations QΩ} ∼= {irreducible components of Λ(v)},
where the irreducible component of Λ(v) corresponding to an isomorphism class R of QΩ represen-
tations in the closure of the subset of Λ(v) consisting of these representations whose restriction to
QΩ is isomorphic to R.

Now restrict to type A, with the orientation 1← 2← · · · ← n. The indecomposable representa-
tions QΩ are of the form

i← (i+ 1)← · · · ← j

for various 1 ≤ i < j ≤ n, and isomorphism classes of QΩ representations are just sums of these
“segments.”

Recall that the crystal B(λ) ⊂ B(∞) is parameterized by column-strict Young tableau. Thus
we should have a map from column strict Young tableau to isomorphism classes of representations
of QΩ. This is given as follows:

(2.1) 1 1 2 4 5
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Each box in the Young tableau, at height i and containing j, corresponds to the QΩ module
i ← · · · ← (j − 1). The Young tableau corresponds to the direct sum of these modules for each
box. An i at height i contributes nothing.

Overall, we have described a pair of maps, first from
∐

v IrrL(v,W ) to isomorphism classes of QΩ

representations, and then from isomorphism classes of QΩ representations to Young tableau with a
certain shape. We have also previously described crystal operators ei and fi on both

∐
v IrrL(v,W )

on the set of Young tableau. In fact our map is an isomorphism of crystals. One can find a proof
of this in [Sav06].

2.2. Torus fixed-point approach. Choose a basis w1, . . . wk for W , which is compatible with
the decomposition W = ⊕i∈IWi. Choose integers nr for 1 ≤ r ≤ k. Define Az ∈ GL(V ) to be the
element which scales each wr by znr . Define a torus action on M(v,W ) by

z · (x, s, t) = (tx, tAts, tA
−1
t t).

By e.g. [CG97, Lemma 5.11.1], the fixed point locus F of this action consists of a disjoint union of
smooth subvarieties of L(v,W ) ⊂M(v,W ). One can consider the map

(2.2)
IrrL(v,W )→ IrrF

X → lim
z→∞

z · (x, s, t) for (x, s, t) ∈ X generic.

This map is always 1-1 (this follows from the fact that z acts with positive weight on the sympletic
form), so one can enumerate IrrL(v,W ) by certain fixed point components. This is at least starting
to look combinatorial.

Now restrict to type An. Assuming that n1, . . . nk are sufficiently generic, the torus action in fact
has isolated fixed points. These fixed points are all direct sums of representations of the following
type:
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where in this example wr ∈ W4. Here the numbers i stand for basis vectors in Vi, and the arrows
are matrix coefficients of i for the appropriate xa. By “of this type,” I mean that there is a single
wr, and one can find a basis and an arrangement of that basis into the squares of a partition as in
the figure such that there is a matrix element of 1 mapping the basis element corresponding to one
box to the basis elements corresponding to the boxes immediately to the southeast and southwest
of that box, and all other matrix coefficients are 0.

The representation shown above can be recorded as a column-strict Young tableau on a single
column of height r, by recording s + 1 each time s appears as the top-right entry in a southwest-
northeast diagonal (the +1 is needed to match standard conventions). If there are less then r
non-trivial diagonals, fill up the column with 1, 2, . . . . The above example becomes

8
6
4
1 .

If the integers nr are chosen carefully, the columns corresponding to the fixed points in the image
the map (2.2) form a column-strict Young tableau. For instance, in the example from (2.1), one
should take w1, w2 ∈ W1, w3 ∈ W2, w4, w5 ∈ W3 and choose n1 >> n2 >> n3 >> n4 >> n5

(in fact, having each difference be at least 2 would be enough). Then the irreducible component
corresponding to the tableau is mapped under (2.2) to

HHj
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which gives the 5 columns of the original tableau. Note that one could choose n1, . . . n5 differently
(although subject to some conditions to ensure that the fixed points remain isolated), and one
should see non-trivially different combinatorics.

In cases with non-isolated fixed points the correspondence between the fixed point locus and
other combinatorics is less trivial. However, I believe that in many cases it still gives a useful way
to approach this issue.
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