
The six vertex model, R-matrices, and quantum groups

Jethro van Ekeren.

1 The six vertex model

The six vertex model is an example of a lattice model in statistical mechanics. The data are

• A finite rectangular M ×N grid, as shown below.

• An assignment of one of two states to each edge in the grid (subject to some restric-
tions). This is called a configuration.

• A number assigned to each vertex depending on the states of the adjacent edges. This
is called the weight of the vertex.

We will distinguish the two states diagrammatically by making the edge thick or thin. An-
other common convention is to use arrows pointing in one direction or the other.

The restriction on the states is that at any vertex only one of the following arrangements
may occur:
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The complex parameters a, b and c are the weights of the vertices, the first two vertex
configurations above have weight a, etc.

We also impose boundary conditions, the most commonly encountered types are:

• Fixed boundary conditions, in which we fix an arrangement of thick and thin lines
around the edge of the grid and consider only interior configurations that are consistent
with it.

• Periodic boundary conditions, in which we identify edges at opposite sides of the grid
and require identified edges to be in the same state.

The configuration shown above satisfies periodic boundary conditions, and we will consider
only periodic boundary conditions in this talk.

The weight of a configuration X is now defined to be the product of the weights of all the
vertices in the grid:

w(X) =
∑

edges e

w(e).

The partition function associated to the grid is the sum, over all possible configurations, of
the weight of the configuration:

Z =
∑

config. X

w(X).

The weight w(X) of a configuration X is physically interpreted as the relative probability
of the occurrence of X . The true probability of X is therefore w(X)/Z. Thus the partition
function is a fundamental quantity in statistical mechanics, and the first step in the analysis
of a statistical system is to calculate it.

In our case Z = Z(M,N) may be quite complicated, but the asymptotics of Z as M,N → ∞
turn out to be simpler. To see why we should expect such a simplification we introduce an
object called the transfer matrix.
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2 The transfer matrix

Let V0 be the 2-dimensional complex vector space with the basis {•, ◦}. Let V = V ⊗N
0 . A

configuration of states on a row of N vertical edges may be identified with an element of the
standard basis of V in the obvious way. In the diagram below for example, the lower and
upper rows of edges are identified with ◦ ⊗ • ⊗ ◦ ⊗ ◦⊗ ◦ and ◦ ⊗ ◦ ⊗ ◦ ⊗ ◦⊗ • respectively.

We will construct an endomorphism T : V → V as follows: Let v and w denote lower and
upper row configurations as shown. To each way of consistently filling in the intervening
row of horizontal edges we assign its weight (ab2c2 in the case above). If α is the sum of the
weights of all possible such configurations, then we define T (v) = αw. This defines T as a
2N × 2N matrix. It is called the (row) transfer matrix.

It is not hard to see that
Z = TrV TM .

The trace of an operator is the sum of its eigenvalues. So if we fix N for the moment and
let M → ∞, we find

Z ∼ ΛM
max as M → ∞.

where Λmax is the largest eigenvalue of T . So our problem is to determine the largest
eigenvalue of T ; we would like to do this for arbitrary N , with the aim of letting N → ∞ as
well as M . Taking the simultaneous limit M,N → ∞ is quite subtle; unless we let M grow
faster than N , certain spurious effects can arise. We will not discuss these here.

Let Vn be the subspace of V spanned by indecomposable tensors with n copies of •, it has
dimension

(

N
n

)

. By inspecting the allowed configurations at a vertex we see that the number
of thick lines entering a row equals the number exiting, hence each space Vn is T -invariant.
When we search for eigenvectors of T , it suffices to consider each Vn independently.

First let us tackle V0. The possible configurations are

with weights aN and bN , so T |V0
= Λ = aN + bN .

Now let us consider n = 1. There are 25 configurations, which come in the following four
basic shapes
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Let us identify a vector g ∈ V1 with the function g(x) : {1, 2, . . .N} → C in the obvious way.
The requirement that g be an eigenvector with eigenvalue Λ becomes

Λg(x) = aN−1bg(x) +

N
∑

y=x+1

aN+x−y−1by−x−1c2g(y)

+

x−1
∑

y=1

ax−y−1bN+y−x−1c2g(y) + abN−1g(x).

The function g(x) may be expanded as a linear combination of the functions e2πikx/N , where
k = 0, 1, . . .N − 1. It turns out that these functions are precisely the N eigenvectors of T .
To see this, we substitute g(x) = zx, where zN = 1. Using the formula for the summation of
a geometric series we get

Λzx = aNL(z)zx − ax−1bN−xc2zN+1/(a− bz)

+bNM(z)zx + ax−1bN−xc2z/(a− bz),

where

L(z) =
ab+ (c2 − b2)z

a2 − abz
and M(z) =

a2 − c2 − abz

ab− b2z
.

Since zN = 1, the second and third terms cancel each other, leaving

Λ = aNL(z) + bNM(z).

The N roots of unity z give N eigenvalues Λ. To determine which eigenvalue is the largest
we should do some more work, we could compute them all explicitly for example.

For n ≥ 2 we may take the same approach, we write g ∈ Vn as g(S) mapping n-element
subsets of {1, 2, . . .N} to C. We may write down an equation for g(S) directly. After some
trial and error, it emerges that we may assume a particular form for g(S) which yields an
eigenvector of T |Vn

in general. This general form is called the Bethe ansatz ; we will not state
it here, mentioning only that it leads to the following formula for the eigenvalues of T |Vn

:

Λ = aNL1L2 · · ·Ln + bNM1M2 · · ·Mn

where Li = L(zi), Mi = M(zi), L and M as above, and z1, z2, . . . zn are complex numbers
which are to satisfy some further equations which we must determine.

The equations satisfied by the zi are quite hard to determine directly. But we will now
observe an interesting symmetry that occurs in the six vertex model that allows us to find
the equations quite easily.
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3 Commuting transfer matrices

To make the computations clearer we make a change of variables:

a = ρ sin(u+ η),

b = ρ sin u,

c = ρ sin η.

We also write

z =
sin v

sin(u+ η)

and similar equations with z = zi, v = vi for i = 1, 2, . . . n. We then have

L(z) =
sin(v − u+ η)

sin(v − u)
and M(z) =

sin(v − u− η)

sin(v − u)
.

The transfer matrix depends on the parameters T = T (a, b, c) = T (ρ, η, u). Suppose we fix
ρ and η, so we have T = T (u). We claim that

[T (u1), T (u2)] = 0 for all u1, u2 ∈ C.

We will prove this later. Now we wish to use this fact to derive the equations satisfied by
the zi of the last section.

Fix n as above. Since the T (u) commute pairwise, they have a common set of eigenvectors,
let P be the matrix whose columns are eigenvectors of T (u). Note that P does not depend
on u. If Λ is the eigenvalue corresponding to the rth eigenvector, then

Λ = Λ(u) = (P−1T (u)P )rr.

The entries of T are polynomials in a, b and c, hence they are entire functions of u ∈ C.
Thus Λ(u) is also an entire function of u.

But

Λ(u) = aNL1L2 · · ·Ln + bNM1M2 · · ·Mn

= ρN sinN(u+ η)
n
∏

i=1

sin(vi − u+ η)

sin(vi − u)
+ ρN sinN u

n
∏

i=1

sin(vi − u− η)

sin(vi − u)
.

The common denominator of the right hand side has zeros at u = vi, so for Λ(u) to be
entire, the numerator must have zeros at u = vi too. This requirement yields the following
n equations:

[

sin vk
sin(vk + η)

]N

= −
N
∏

i=1

sin(vi − vk + η)

sin(vi − vk − η)
.

In principle we may solve these to find z1, z2, . . . zn, and then substitute to find the possible
eigenvalues Λ.
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4 The R-matrix

Our task now is to prove that [T (u1), T (u2)] = 0. To do this we introduce a new matrix
R : V0 ⊗ V0 → V0 ⊗ V0 defined as follows:

R(ǫ1 ⊗ ǫ2) =
∑

ǫ′
1
,ǫ′
2

w(ǫ1, ǫ2, ǫ
′

1, ǫ
′

2)ǫ
′

1 ⊗ ǫ′2

where w(ǫ1, ǫ2, ǫ
′

1, ǫ
′

2) here denotes the weight of the following configuration:

With respect to the basis {• ⊗ •, • ⊗ ◦, ◦ ⊗ •, ◦ ⊗ ◦}, R becomes the matrix

R =









a 0 0 0
0 b c 0
0 c b 0
0 0 0 a









= ρ









sin(u+ η) 0 0 0
0 sin u sin η 0
0 sin η sin u 0
0 0 0 sin(u+ η)









.

As in the last section we fix ρ and η, letting R = R(u).

It may be verified by direct computation that for any nonzero complex numbers ζ1, ζ2 and
ζ3, R(u) satisfies the Yang-Baxter equation with parameter :

R12(ζ3/ζ2)R23(ζ3/ζ1)R12(ζ2/ζ1) = R23(ζ2/ζ1)R12(ζ3/ζ1)R23(ζ3/ζ2),

Here R12 means R ⊗ 1 : V0 ⊗ V0 ⊗ V0 → V0 ⊗ V0 ⊗ V0 and similarly for R23. This equation
has a nice geometric interpretation. We consider three crossing strands as shown below, and
we associate a direction to each strand and also a complex number ζi. At the crossing of
strands i and j suppose i comes before j in the clockwise ordering. Then we associate to
their crossing, a copy of R(u) where u = ζj/ζi. The Yang-Baxter equation then becomes the
following equation, where a trace is taken over all internal edges:
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The transfer matrix T (u) may be expressed in terms of the R-matrix as follows:

a copy of R(u/1) = R(u) is placed at each crossing, and the trace is taken over all internal
edges (including the edge that wraps around between the far left and right). As before, the
arrows specify which lines are the inputs to the R-matrix and which are the outputs. The
product of transfer matrices T (u1)T (u2) is now

Now we introduce another copy of R, as well as its inverse, into this last diagram. We then
manipulate using the Yang-Baxter equation to obtain, successively:

Thus T (u1)T (u2) = T (u2)T (u1) as required.

5 Affine quantum groups

Let g be a finite dimensional simple Lie algebra, and Uq(g) the associated quantum group.
We have seen in previous lectures that if V and W are two Uq(g)-modules then V ⊗W and
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W ⊗ V are isomorphic Uq(g)-modules, but the isomorphism is not the usual ‘swap’. There
is a nontrivial intertwining map RV,W : V ⊗W → W ⊗ V . If we fix a Uq(g)-module V and
put R = RV,V , then R satisfies the (ordinary) Yang-Baxter equation.

So quantum groups are a source of R-matrices. However, the arguments above required an
R-matrix that depended on a parameter (in addition to the usual q), and the R-matrices
we obtain from representation of quantum groups do not naturally contain such parameters.
To obtain R-matrices with parameter we need to consider affine quantum groups.

The affine quantum group associated to g is just Uq(ĝ), i.e., it is constructed in the same
way as Uq(g), but with the affine Kac-Moody algebra

ĝ = g⊗ C[t, t−1]⊕ CK ⊕ Cd

in place of g. We also use a variant affine quantum group U ′

q(ĝ) = Uq(ĝ
′) which is constructed

again in the same way, but using

ĝ′ = g⊗ C[t, t−1]⊕ CK

instead of ĝ.

Given a finite-dimensional representation V of Uq(sl2) it is possible to form an associated

induced representation V aff of Uq(ŝl2), it is infinite dimensional. V aff becomes a representa-

tion of U ′

q(ŝl2) automatically. Fix ζ ∈ C, neither zero nor a root of unity. V aff factors to a

U ′

q(ŝl2)-module Vζ obtained by setting t = ζ . As vector spaces (and in fact as representations

of Uq(sl2) ⊂ Uq(ŝl2)), Vζ
∼= V .

The construction is more subtle than the preceding paragraph would imply. There are
analogous constructions in other types leading to finite dimensional modules Vζ, but in
general Vζ is not irreducible as a representation of the underlying finite type algebra g.

Returning to the sl2 case now: It turns out that for any ζ1, ζ2 we have an R-matrix

R(ζ1, ζ2) = R(ζ2/ζ1) : Vζ1 ⊗ Vζ2 → Vζ2 ⊗ Vζ1 ,

which satisfies the Yang-Baxter equation with parameter.

The R-matrix we used above in relation to the six vertex model is essentially the same
as the R-matrix obtained in this way from the standard representation V = C

2 of sl2.
Other representations of sl2 (and, with qualifications, representations of other affine quantum
groups) yield new examples of R-matrices with parameter. Indeed, a large part of the initial
motivation to study quantum groups came from the utility of such R-matrices in solving
lattice models.
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