
LUSZTIG’S NILPOTENT VARIETY AND B(∞)

STEVEN SAM AND PETER TINGLEY

Last week we defined Lusztig’s nilpotent variety [L], and discussed how it is used to give a
geometric realization of U−(g) (precisely, an embedding of U−(g) into a geometrically defined
algebra). This week, we will give a similar construction of the crystal B(∞). Here the vertices
of the crystal will be irreducible components of the varieties. Note that we have not defined a
realization of Uq(g), so we can’t really talk of this as a “crystal basis.” Instead we will use the
recognition theorems from lecture 4 to see that we obtain B(∞).

1. Review from last week

We defined Q to be the doubled quiver of some graph Γ = (I, E), with a fixed orientation (i.e.
chosen direction for each edge). For example, if Γ is the A4 Dynkin diagram,

Q =
- - -

� � �i i i i1 2 3 4 .

where the red edges are the negatively oriented edges. If we choose a different orientation, we will
end up with an isomorphic variety below, so this choice is of minimal importance. The preprojective
algebra P is the quotient of the path algebra CQ by the moment map condition, which in this case
consists of the relations

∗i1 -
� i2 = 0

∗i1 -
� i2 =

∗i2 -
� i3

∗i2 -
� i3 =

∗i3 -
� i4

∗i4 -
� i3 = 0,

where each diagram represents a path of length two starting at the stared vertex. Lusztig’s
nilpotenet variety Λ(V ) is the variety of representations of the completion of P on an I graded
vector space V = V1 ⊕ · · · ⊕ Vn, subject to the condition πiV = Vi. Here πi is the projection
corresponding to the trivial path at vertex i. In more general cases we need to take a completion
of the preprojective algebra, but that is unnecessary in finite type.

Up to isomorphism, Λ(V ) only depends on the dimension vector v of V . Assuming we are working
with GL(V ) =

∏
I GL(Vi) invariant constructions, we can safely denote it by Λ(v). We constructed

a product ∗ on the space
⊕

v M(Λ(v)/GL(v)) of GL(V )-invariant constructible functions on all
Λ(v):

∗ : M(Λ(v)/GL(v))⊗M(Λ(v′)/GL(v′))→M(Λ(v + v′)/GL(v + v′)).

There is an embedding

U−(g) ↪→
⊕
v

M(Λ(v)/GL(v))

which takes Fi to the function “1” on Λ(1i) (which is a point).
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2. Crystals from Λ(V )

The following construction was originally give in [KS]. We wish to show that there is a realization
of B(∞) where the vertices are the irreducible components of

∐
v Λ(v). Call this latter set BP . In

order to make sense of this claim, we need to define ei, fi : B
P → BP ∪ {∅}, wt, ϕ, ε : BP → P .

Fix x = (xa)a : i→j ∈ Λ(v). Define

(2.1) xi :=
⊕

a : i→j

xa : Vi →
⊕

a : i→j

Vj and ix :=
⊕

a : j→i

ε(a)xa :
⊕

a : j→i

Vj → Vi,

where ε(a) = 1 is a is black, and −1 if a is red. Note that the moment map condition becomes

ix ◦ xi = 0 for all i, or equivalently

(2.2) imxi ⊂ ker ix.

Fix Z ∈ Irr Λ(v). Let

(2.3) Z0
i = {T = (x, v) ∈ Z | dim im(xi) is maximal, and dim im(ix) is maximal}.

Note that, for all i, Z0
i is an open dense subset of Z.

Definition 2.4. For Z ∈ Irr Λ(v), let

(i) ei(Z) be the closure of {T ∈ Λ(v−1i) | T is isomorphic to a submodule of some T ′ ∈ Z0
i }.

(ii) fi(Z) be the closure of {T ∈ Λ(v + 1i) | T has a submodule in Z0
i }.

(iii) εi(Z) := dim imxi − dim ker ix for some (equivalently any) x ∈ Z0
i .

(iv) ε(Z) :=
∑
εi(Z)ωi.

(v) wt(Z) := −
∑

I viαi.
(vi) ϕ(Z) := wt(Z) + ε(Z).

�

To see that ei(Z), fi(Z) are indeed single irreducible components (or ∅), one shows that they are

all closures of vector bundles over an open subset of e
εi(Z)
i (Z), and that this also holds for Z itself.

Since Z is irreducible, this implies that e
εi(Z)
i (Z) is irreducible, from which it follows that each of

the vector bundles corresponding to eki (Z) and fki (Z) are irreducible.

Definition 2.5 (Alternative definition of fi). Take T ∈ Z generic and a generic extension

0→ T → T ′ → Si → 0.

Then T ′ will be in a unique Z ′ ∈ Λ(v + 1i) and we set fi(Z) = Z ′. �

Recall the definition of the stupid crystal B(i):

· · · b(i)(−1)← b(i)(0)← b(i)(1)← · · ·

where wt = 0, ε = 0, ϕ = 0 at b(i)(0) and the arrows are given by fi.

Theorem 2.6 (Kashiwara–Saito). Let B be a combinatorial highest weight crystal with an involu-

tion ∗. Define e∗i = ∗ ◦ ei ◦ ∗ and define Φi : B → B ⊗B(i) by b 7→ (e∗i )
ε∗i (b)(b)⊗ b(−ε∗i (b)). If Φi is

a morphism for all i, then B ∼= B(∞).

Proof. As discussed in Lecture 4 (and proven in [KS]), B(∞) has this property, where ∗ is Kashi-
wara’s involution inherited from the algebra anti-automorphism of U−q (g) fixing all Fi. Thus it is
enough to see that the conditions of the theorem uniquely characterize B. Choose a sequence of
i ∈ I so that each element appears infinitely many times. Then the conditions imply that B is
isomorphic to the crystal generated by · · ·⊗b(i3)(0)⊗b(i2)(0)⊗b(i1)(0) ⊂ · · ·⊗B(i3)⊗B(i2)⊗B(i1). �



LUSZTIG’S NILPOTENT VARIETY AND B(∞) 3

Now define ∗ : Λ(V ) → Λ(V ∗) by (V, x) 7→ (V ∗, ∗x), where ∗xa = x∗a. Choosing an I-graded
isomorphism of vector spaces V ∼= V ∗. This gives us an involution

∗ : Irr(Λ(V ))→ Irr(Λ(V ∗)) ∼= Irr(Λ(V ))

which is independent of the choice of isomorphism by GL-equivariance.
To apply the theorem, we need to show that

ε∗i (fi(Z)) =

{
ε∗i (Z) if ϕi((e

∗
i )

ε∗i (Z)(z)) > ε∗i (Z)

ε∗i (Z) + 1 otherwise
.

Using the explicit definitions of ∗ and ε, we see that ε∗(Z) := ε(∗Z) is given by dim kerxi for a
generic x in Z.

Now, fix Z and x ∈ Z generic. Using definition 2.5, we see that ε∗i (fi(Z)) = ε∗i (Z) if and only if
dim imxi < dim kerxi. Thus we need to show that

(2.7) dim imxi < dim kerxi ⇐⇒ ϕi((e
∗
i )

ε∗i (Z)(z)) > ε∗i (Z).

This is an elementary (although slightly tricky) exercise, which we leave to the reader. It can also
be found in [KS].
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