LUSZTIG’S NILPOTENT VARIETY AND B(x)

STEVEN SAM AND PETER TINGLEY

Last week we defined Lusztig’s nilpotent variety [L], and discussed how it is used to give a
geometric realization of U~ (g) (precisely, an embedding of U~ (g) into a geometrically defined
algebra). This week, we will give a similar construction of the crystal B(co). Here the vertices
of the crystal will be irreducible components of the varieties. Note that we have not defined a
realization of U,(g), so we can’t really talk of this as a “crystal basis.” Instead we will use the
recognition theorems from lecture 4 to see that we obtain B(oco).

1. REVIEW FROM LAST WEEK

We defined @ to be the doubled quiver of some graph I' = (I, E), with a fixed orientation (i.e.
chosen direction for each edge). For example, if I' is the A4 Dynkin diagram,

Q: 1 2 3 u@

where the red edges are the negatively oriented edges. If we choose a different orientation, we will
end up with an isomorphic variety below, so this choice is of minimal importance. The preprojective
algebra P is the quotient of the path algebra C@Q by the moment map condition, which in this case

consists of the relations
(ﬁ:’@ =0
O = 0
G0 = G——0
a0 =0,

where each diagram represents a path of length two starting at the stared vertex. Lusztig’s
nilpotenet variety A(V) is the variety of representations of the completion of P on an I graded
vector space V = V) & --- @ V,,, subject to the condition m;V = V;. Here m; is the projection
corresponding to the trivial path at vertex i. In more general cases we need to take a completion
of the preprojective algebra, but that is unnecessary in finite type.

Up to isomorphism, A(V') only depends on the dimension vector v of V. Assuming we are working
with GL(V') = [[; GL(V;) invariant constructions, we can safely denote it by A(v). We constructed
a product * on the space @, M(A(v)/GL(v)) of GL(V)-invariant constructible functions on all
A(v):

x: M(A(v)/GL(v)) @ M(A(W")/GL(")) = M(A(v + ') /GL(v + v')).
There is an embedding

(—>@zm v)/GL(v))

which takes F; to the function “1” on A(1;) (which is a point).
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2. CRySTALS FROM A(V)

The following construction was originally give in [KS]. We wish to show that there is a realization
of B(co) where the vertices are the irreducible components of [ [, A(v). Call this latter set B”. In
order to make sense of this claim, we need to define e;, f;: B — BP U {0}, wt,p,e: BY — P.

Fix © = (24)a: i—j € A(v). Define

(2.1) T = @ To: Vi — @ V; and x:= @ e(a)z, : @ Vi = Vi,
a: i—j a: i—j a: j—i a: j—i

where €(a) = 1 is a is black, and —1 if a is red. Note that the moment map condition becomes
ixox; =0 for all ¢, or equivalently
(2.2) imz; C ker ;x.

Fix Z € Irr A(v). Let
(2.3) 7Y = {T = (z,v) € Z | dimim(z;) is maximal, and dimim(;z) is maximal}.
Note that, for all 7, Z? is an open dense subset of Z.

Definition 2.4. For Z € Irr A(v), let

(i) €i(Z) be the closure of {T' € A(v—1;) | T is isomorphic to a submodule of some 17" € Z?}.
(ii) f:(Z) be the closure of {T € A(v+ 1;) | T has a submodule in Z?}.
(iii) &;(Z) := dimimz; — dimker ;& for some (equivalently any) = € Z?.
(iv) e(Z) == > ei(Z)wi.
v) wt(Z) = = > vy
(vi) ¢(2) :=wt(Z) +¢e(2).

n
To see that e;(Z), fi(Z) are indeed single irreducible components (or (), one shows that they are

all closures of vector bundles over an open subset of efi(z)(Z ), and that this also holds for Z itself.

Since Z is irreducible, this implies that eEZ(Z)(Z ) is irreducible, from which it follows that each of
the vector bundles corresponding to e¥(Z) and f¥(Z) are irreducible.

Definition 2.5 (Alternative definition of f;). Take T € Z generic and a generic extension
0—-T—->T —S;—0.
Then 7" will be in a unique Z" € A(v + 1;) and we set f;(Z) = Z'. O
Recall the definition of the stupid crystal B®:
b0 (=1) b (0) b (1)
where wt = 0, e = 0, ¢ = 0 at b()(0) and the arrows are given by f;.

Theorem 2.6 (Kashiwara—Saito). Let B be a combinatorial highest weight crystal with an involu-
tion x. Define ef = xo0e; 0 and define ®;: B — B® B by b ()5 O (b) @ b(—eX(b)). If ®; is
a morphism for all i, then B = B(oc0).

Proof. As discussed in Lecture 4 (and proven in [KS]), B(co) has this property, where * is Kashi-
wara’s involution inherited from the algebra anti-automorphism of U, (g) fixing all F;. Thus it is
enough to see that the conditions of the theorem uniquely characterize B. Choose a sequence of
1 € I so that each element appears infinitely many times. Then the conditions imply that B is
isomorphic to the crystal generated by - - -®@b() (0)®b(2) (0)@b()(0) C ---®@B®@BE)gBH). O
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Now define *: A(V) — A(V*) by (V,z) — (V*, *x), where *z, = x%. Choosing an I-graded
isomorphism of vector spaces V = V*. This gives us an involution
w: Irr(A(V)) — Irr(A(VF)) = Irr(A(V))

which is independent of the choice of isomorphism by GL-equivariance.
To apply the theorem, we need to show that

&i (%) if pi((e}) 9 (2)) > €](2)

& (fi(2)) = {5%‘(2) +1 otherwise

Using the explicit definitions of * and e, we see that £*(Z) := e(xZ) is given by dimker x; for a
generic x in Z.

Now, fix Z and = € Z generic. Using definition we see that ef(fi(Z)) = ¢}(2) if and only if
dimimz; < dimker z;. Thus we need to show that

(2.7) dim imz; < dimker z; <= @;((e)% ¥ (2)) > £:(Z).

This is an elementary (although slightly tricky) exercise, which we leave to the reader. It can also
be found in [KS].
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