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1. Gelfand–Tsetlin bases

1.1. General construction. Recall: the finite-dimensional irreducible polynomial representations
of GLn(C) are in bijection with partitions λ = (λ1 ≥ · · · ≥ λn ≥ 0), which we represent as
Young diagrams with at most n rows. Call this latter set Yn. Let Vλ denote the representation
corresponding to λ. Our goal is to construct nice bases for Vλ that are well-behaved with respect
to restrictions and tensor products.

The idea is work by induction. Suppose that we have a Gelfand–Tsetlin (G-T) basis for all
irreducible representations of GLn−1. We consider the restriction of Vλ to GLn−1, decompose it
as a direct sum of irreducible representations, and take the Gelfand–Tsetlin basis of each of these.
This gives a basis for Vλ itself. Of course, we have to make a choice when we decompose Vλ into
irreducible representations of GLn−1, so the notion of Gelfand-Tsetlin basis can only be well defined
up to such choices. However, in this case the decomposition is multiplicity free, so in the end we
get a basis for V (λ) which is well defined up to rescaling each basis vector.

1.2. Combinatorics.

Definition 1.1. For λ ∈ Yn and λ′ ∈ Yn−1 with λ′ ⊂ λ, say that λ/λ′ is a horizontal strip if
each column in λ/λ′ has at most 1 element. �

Then we have
Vλ ∼=

⊕
λ/λ′ horizontal strip

Vλ′

as GLn−1-representations.

Definition 1.2. A GT-pattern is a triangular array of numbers (λij)n≥i≥j≥1 such that λij ≥
λi−1,j ≥ λi,j+1. These are in bijection with semistandard Young tableaux by considering the
successive shapes

λ1,• ⊆ λ2,• ⊆ · · · ⊆ λn,•
and labeling the boxes in λi,• \ λi−1,• with the number i. Call this bijection τ . �

The G-T basis of Vλ is parametrized by GT-patterns with λn,• = λ. To describe the restriction
Vλ ↓GLn−1 ,take the union of GT-bases for GLn−1 representations, where you forget about the top
row.

1.3. Orthogonal Lie algebras. The representations of so2n+1 are parametrized by sequences
λ1 ≥ · · ·λn ≥ 0 which are either all integers or all half-integers and for so2n, they are parametrized
by λ1 ≥ · · ·λn−1 ≥ |λn| which are either all integers or all half-integers.

The branching rules are

Vλ ↓
so2n+1
so2n

∼=
⊕

Vµ

where λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn ≥ |µn| and

Vλ ↓so2nso2n−1
∼=

⊕
Vµ
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where λ1 ≥ µ1 ≥ · · · ≥ µn−1 ≥ |λn|.
Once again the branchings are multiplicity free, so one can define analogues of G-T bases and

G-T patterns in this case.

2. G-T bases compatible with crystal structure

Now consider Uq(gln(C)). One can construct GT bases for the irreducible representations Vλ, just
as for GLn, which are well defined up to individual rescaling of the basis vectors. Also, consider the
vector representation V . It is well known that V ⊗N ∼=

⊕
T Vshape(T ), where T ranges over standard

Young tableaux with N nodes and at most n rows.
The main result states the following: there is an appropriate decomposition of choice of V ⊗N

into irreducible representations V (TR) corresponding to each standard Young tableau T , and an
appropriate normalization of the G-T bases for each of these representations, such that when q → 0,
the G-T basis vector approach the standard basis vectors of V ⊗N . For q−1 → 0, the same is true, but
we use different decompositions V (TL), and a different normalization of the G-T basis elements. In
modern language, this occurs because both the G-T bases (correctly normalized) and the standard
basis of V ⊗N are crystal bases. In fact, the results discussed in this section, due to Date, Jimbo
and Miwa [3], were an important precursor to the notion of a crystal basis.

The remainder of this section is occupied with making these statements precise and providing a
proof.

2.1. Action of Uq(gln(C)) on G-T basis. Uq(gln(C)) is generated by qεi/2, q−εi/2, X+
j , X−j . Then

denoting the Gelfand-Tsetlin basis elements of the Uq(gln(C))-module Vλ by |m〉, the action of the
above generators is given as follows:

qεi/2|m〉 = q
∑j
i=1mij−

∑j−1
i=1 mi,j−1 |m〉

X+
j |m〉 =

(j)∑
cj(m,m

′)|m′〉

X−j |m〉 =

(j)∑
cj(m,m

′)|m′〉,

where cj(m,m
′) 6= 0 only if there exists i such that m′ij = mij − 1,m′ab = mab∀(a, b) 6= (i, j), in

which case the coefficients are rather complicated to write down. The highest weight vector is given
by the Gelfand-Tsetlin pattern with first row (λ1, · · · , λn), second row (λ1, · · · , λn−1) and so on.

2.2. The embedding VW ⊂ VY ⊗ V . Say Y
µ−→ W if W is obtained from Y by adding a box

in the µth row. We will now describe explicitly the decomposition VY ⊗ V ∼= ⊕
Y
µ−→W

VW . Given

|m〉 ∈ GT (W ), define |m′〉 = |m; in, · · · , ij〉 ∈ GT (Y ) (note the slight abuse of notation: |m′〉 is
not a single element), where for j ≤ k ≤ n, 1 ≤ ik ≤ k, m′ik = mik,k − 1 if j ≤ k ≤ n, i = ik and
m′ik = mik otherwise. Then the above branching rule is determined explicitly by the following,
where the coefficients wq(m; in, · · · , ij) are known as Wigner coefficients.

|m〉 =
n∑
j=1

∑
in=µ,in−1,···i1

wq(m; in, · · · , ij)|m; in, · · · , ij〉 ⊗ vj

2.3. RSK. We’ll define two bijections α and β between : {1, . . . , n}N and
∐
Y S(Y )×T (Y ) ranging

over all Young diagrams Y with N nodes and at most n rows, where S(Y ) is the set of semistandard
Young tableaux of shape Y , and T (Y ) is the set of standard Young tableaux of shape Y .

First, given a SSYT S and a number x, define the α-insertion S ← x to be the jdt rectification
of the shape obtained by adjoining x to the lower left corner of the tableau S. Given a word
w = w1 · · ·wN , define αS(w) = ((((w1 ← w2)← w3) · · · )← wN ), and let αT (w) record the growth
of the subsequent shapes. The bijection α is then w → (αS(w), αT (w)).
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The second bijection β is defined in the same way, but where β-insertion, given a SSYT S and a
number x, S ↓ x denotes the jdt rectification of the shape obtained by adjoining x to the upper right
corner of the tableau S. Then βS(w) and βT (w) are defined as above. The importance of α-insertion
and β-insertion to study the embedding VW ⊂ VY ⊗ V is detailed in the below proposition:

Proposition 2.1. Given Y
µ−→ W , node added in the νth column. Fix R ∈ S(W ), and let |m〉 ∈

GT (W ) be the corresponding Gelfand-Tsetlin pattern. Set

|m′〉 =

{
τ−1(R→ ν) q → 0

τ−1(R ↑ µ) q−1 → 0
.

Here R → ν (resp R ↑ µ) are the deletion procedures inverse to S ← µ and S ↓ µ. If the deletion
throws away the letter j, then under the embedding VW ⊂ VY ⊗ V , we have:

lim
q±1→0

|m〉 = lim
q±1→0

(±1)µ−1|m′〉 ⊗ vj

2.4. Proof of Main Theorem. First we explicitly describe the decomposition V ⊗N = ⊕TVT in
two different ways: recall that T ranges over all standard tableau with N nodes and ≤ n rows.
Given a fixed tableau T , suppose the entry k entry occurs in the position (µk, νk). To describe the
first decomposition V ⊗N ∼= ⊕TV (TR), the embedding V (TR) → V ⊗N is defined inductively: let
Ti be the subtableau of T consisting of entries ≤ i, then VT1

∼= V , embed VT2 ↪→ VT1 ⊗ V , and
so on until we get V (T ) = V (TN ) ↪→ VTN−1

⊗ V ; composing we get an embedding VT → V ⊗N ,

and the direct sum decomposition V ⊗N ∼= ⊕V (TR) follows inductively from the decomposition
VY ⊗ V ∼= ⊕

Y
µ−→W

VW . The second decomposition V ⊗N ∼= ⊕TV (TL) is defined similarly, but using

a slightly different embedding V (T2) ↪→ V ⊗ V (T1) and so on, using a modification of the Wigner
coefficients.

With the notation developed above, for emphasis we now state in full detail the Main Theo-
rem that was quickly mentioned above; and we will note that its proof follows directly from the
Proposition above by induction on N .

Theorem 2.2. If w = i1i2 · · · iN , then vi1 ⊗ · · · ⊗ viN ∈ V ⊗N ∼= ⊕TV (TR), at the limit q → 0,
lies in the copy of VTR where T = αT (w), and is the Gelfand-Tsetlin basis element corresponding
to the SSYT S = αS(w). A similar statement holds in the limit q−1 → 0, where we instead use
the decomposition V ⊗N ∼= ⊕TV (TL). Thus in both cases, the union of the Gelfand-Tsetlin bases
coincides with the “obvious” bases of V ⊗N .

This is clear using the proposition and using induction on N . Indeed, assume the statement for
N −1, consider what the vector vi1 ⊗· · ·⊗ viN−1 corresponds to under the decomposition, and then
use the Proposition above to deduce the required statement.

References

[1] ’A. I. Molev, Gelfand-Tsetlin Bases for Classical Lie algebras, 2006, arXiv:math/0211289v2
[2] ’Chari, & Pressley, A Guide to Quantum Groups, 1994, Cambridge University Press
[3] ’Date, Jimbo & Miwa, Representations of Uq(gln(C)) at q = 0 and the Robinson-Schensted correspondence,

Physics and mathematics of strings, 185211, World Sci. Publ., Teaneck, NJ, 1990


	1. Gelfand–Tsetlin bases
	1.1. General construction
	1.2. Combinatorics
	1.3. Orthogonal Lie algebras

	2. G-T bases compatible with crystal structure
	2.1. Action of Uq(gln(C)) on G-T basis
	2.2. The embedding VW VY V
	2.3. RSK
	2.4. Proof of Main Theorem

	References

