MATH 100: CLASS DISCUSSION
 4 SEPTEMBER 2018

If time permits play 2048. Download app on your phone.

Write the powers of 2 through 2^{12}. Can you estimate 2^{20} without using a calculator?

Order of Operations:

1. Parentheses
2. Exponents and roots
3. Multiplication and Division
4. Addition and Subtraction

Basic laws:

1. Associative rule
2. Distributive rule
3. Commutative rule

Verify each of the following examples:

1. $\sqrt{1+3}+5=\sqrt{4}+5=2+5=7$
2. $\frac{1+2}{3+4}+5=\frac{3}{7}+5$
3. $[(1+2)-3]-(4-5)$
4. $10 \div(5 \div 2)=4$
5. $(10 \div 5) \div 2=1$

Exercises: Simplify each of the following expressions:

1. $(5-4)-((2-3)+1)$
2. $(9-11)+5(1-4 \div 2)$
3. $9-3 \div \frac{1}{3}+1$
4. $1+2(3-4)+(6-7+8)(3+1)$
5. $3(1+2(3+4(5+6)))$
6. $5(\mathrm{x}-3)-7(6-\mathrm{x})+3$
7. $24-3(8-x)$
8. $7(25-x)-2 x$
9. $2(3 x-25)$
10. $5 x-17+3 x-5$
11. $6 x-7-8 x+115$
12. $x-[3+\{x-3(3+x)\}]$
13. $14 \mathrm{x}-(5 \mathrm{x}-9)-\{4-3 \mathrm{x}-(2 \mathrm{x}-3)\}$
14. $10 \times 4-2 \times\left(4^{2} \div 4\right)-2 \div 1 / 2+9$
15. $-10+\left(20 \div 2^{2} \times 5 \div 5\right) \times 8-2$

> Algebra exercises from Hall \& Knight I (continued from last class)

1. If $a=7, b=2, c=0, x=5, y=3$, find the value of: (A) $a b^{3}$, (B) $a^{4} b^{y}$, (C) $a^{5} c^{5} y^{x}$,
(D) $1^{x+3 y}$,
(E) $a b c x y$, (F) $2 a+5 b+9 c$,
(G) $3 \mathrm{x}^{2}+1$,
(H) $a^{b^{c}}$,
(I) $\left(a^{b}\right)^{c}$
2. If $\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=1, \mathrm{p}=0, \mathrm{q}=4, \mathrm{r}=6$, find the value of: (A) $\frac{3 a^{2} r}{8 b}$, (B) $3 \mathrm{a}^{2} \mathrm{~b}^{\mathrm{c}}$, (C) $\frac{b^{r}}{r^{b}}$,

$$
\text { (D) } \frac{64}{q^{r}}, \text { (E) } \frac{5 a^{r} b^{q}}{64 r^{a}}
$$

3. If $\mathrm{a}=2, \mathrm{~b}=3, \mathrm{c}=1, \mathrm{~d}=0$, find the numerical value of: (A) $3 \mathrm{bcd}+5 \mathrm{cda}-7 \mathrm{dab}+\mathrm{abc}$,

$$
\text { (B) } 2 a^{2}+3 b^{3}-4 c^{4}, \quad \text { (C) } a^{2}+b^{2}+c^{2}+d^{2}, \quad \text { (D) } a^{4}+b^{4}-c^{4}
$$

4. If $a=2, b=1, c=3, x=4, y=6, z=0$, find the value of:
(A) $c^{2}(y-x)-b^{2}(c-a)$,
(B) $(2 \mathrm{a}-\mathrm{c})(\mathrm{x}+2 \mathrm{y}-\mathrm{z})$,
(C) $\frac{a^{2}}{b^{2}}+\frac{b^{2}}{a^{2}}-\frac{2 y}{x^{2}}$,
(D) $\frac{a^{2}-b^{2}}{a^{2} b^{2}}-\frac{(a+b+z)^{2}}{(b+c-z)^{2}}$,
(E) $\frac{(a+b+c)^{2}}{c(y-z)}-\frac{4(c-a)^{3}}{3(a+y)}$
5. When x has the values $0,3,6,8,10$, find the values of $x^{2}-9 x+20$.
6. Show that, if $\mathrm{a}=10$ and $\mathrm{b}=7$, then the following two expressions are equal:

$$
4(a-b)+3(a+b), \quad 5(a+b)+2(a-3 b)
$$

Are these expressions equal for all values of a and b ?
7. When $x=5$, show that $4 x^{2}+4 x-3$ is equal to $9(x+8)$.
8. Show that $6 x^{3}-11 x^{2}+3 x$ is equal to 0 when $x=1 / 3$, and when $x=3 / 2$. Find its value in the form of a decimal when $x=1 / 10$.

Oral exercises (from Hall \& Knight):

(A) Which is the greater 245 or $2 \cdot 4 \cdot 5$, and by how much?
(B) Write the product of t and u in three ways.
(C) If 5 first-graders have p marbles each, express algebraically how many they have in all. If $\mathrm{p}=25$, what is the number?
(D) If 6 cakes are to be shared equally among x boys, express algebraically how many each will have. If $x=42$, what is the number?
(E) If 54 books are divided equally among c students, express each student's share algebraically. What is the arithmetical value if $\mathrm{c}=6$?
(F) What is the difference between "twice 3 " and " 3 squared"?
(G) Give the expression for "thrice d," also that for the "cube of d." Give the arithmetical values if $\mathrm{d}=2$.
(H) Distinguish between "four times x " and " x to the fourth." Give the respective values when $\mathrm{x}=3$.
(I) The quantity c is to be multiplied by the quantity x. How is this expressed? Give the product if $\mathrm{c}=7$ and $\mathrm{x}=3$.
(J) If x factors, each equal to c, are to be multiplied together, express this algebraically. What is the value if $\mathrm{x}=2$ and the factor $\mathrm{c}=7$?
(K) The quantities a, b, c are to be added together. Express this algebraically. What is the answer if $\mathrm{a}=5, \mathrm{~b}=7, \mathrm{c}=11$?
(L) The quantity r is to be taken from the quantity s. Give the algebraic expression that denotes this. What is the answer if $\mathrm{r}=27$ and $\mathrm{s}=41$?
(M) Albertine starts playing with x marbles and wins y . Express the number she then has. If $x=25$ and $y=9$, what number has she?
(N) Albertine plays with her increased number and loses z. Express the number she then has. If $\mathrm{z}=17$, how many has she left?
(O) A farmer takes f sheep to market and sells g of them. How many has she left? What is the remainder if $\mathrm{f}=64$ and $\mathrm{g}=48$?
(P) Another farmer takes k sheep to market and returns with l of them. How many has he sold? If $k=75$ and $l=32$, what is the number he has sold?
(Q) Give the sum and product of the three quantities a, b, c; and if $\mathrm{a}=5, \mathrm{~b}=$ $7, c=6$, give the arithmetical value of each.
(R) If I walk y miles per hour for y hours, what is the algebraic expression for the length of my walk? If $\mathrm{y}=4$, what is the answer?

The mathematical phenomenon always develops out of simple arithmetic, so useful in everyday life, out of numbers, those weapons of the gods: the gods are there, behind the wall, at play with numbers.

- Le Corbusier (1887-1965)

