(basic calculator permitted)

To obtain any credit, you must show your work for each problem! Place a box around each answer.

1. [4 pts] Let $\mathrm{P}=(7,11)$ and $\mathrm{Q}=(2,-1)$. Find the slope of the line joining P and Q .

Solution: The slope of the line joining the points P and Q is:

$$
m_{P Q}=\frac{\text { rise }}{\text { run }}=\frac{-1-11}{2-7}=\frac{-12}{-5}=\frac{12}{5}
$$

2. Albertine buys an old castle in GammaVille. At time $t=0$, there are 1593 bats and 4173 rats. Suppose that the bat population grows linearly at a rate of 55 bats per year and that the rat population declines linearly at the rate of 42 rats per year.

(a) [3 pts] Write an equation for the number of bats $\mathrm{B}(\mathrm{t})$ at time t.

Solution: $B(t)=1593+55 t$
(b) [3 pts] Write an equation for the number of rats $\mathrm{R}(\mathrm{t})$ at time t.

Solution: $R(t)=4173-42 t$
3. [1 pt each] Consider the straight line $\mathrm{y}=\mathrm{x}-1$. For each of the following points in the plane determine whether
$>$ the point lies on the line;
$>$ the point lies above the line, or
$>$ the point lies below the line.
Write: $O N, A B O V E$, or $B E L O W$ next to each point below.
(a) $(2,0)$
(b) $(4.3,3.3)$
(c) $(-3,-4)$
(d) $(1,-2)$

Solution: Let's call this function $y=f(x)$.
(a) $(2,0)$

Now $f(2)=2-1=1>0$. Thus $(2,0)$ lies BELOW the line.
(b) $(4.3,3.3)$

Now $f(4.3)=4.3-1=3.3$. Thus $(4.3,3.3)$ lies $\boldsymbol{O N}$ the line.
(c) $(3,2)$

Now $f(3)=3-1=2$. Thus $(3,2)$ lies $\boldsymbol{O N}$ the line.
(d) $(1,-2)$

Now $f(1)=1-1=0>-2$. Thus $(1,-2)$ lies BELOW the line.
4. [2 pts each] Which of the following functions might be linear? Explain.
(a)

\mathbf{t}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathrm{G}(\mathrm{t})$	19	15	11	7	3

Answer: This appears to be a linear function.
Explanation: Examining slopes between consecutive points

The slope between $(1,19)$ and $(2,15)$ is $\frac{\text { rise }}{\text { run }}=\frac{15-19}{2-1}=-4$
The slope between $(2,15)$ and $(3,11)$ is $\frac{\text { rise }}{\text { run }}=\frac{11-15}{3-2}=-4$
The slope between $(3,11)$ and $(4,7)$ is $\frac{\text { rise }}{\text { run }}=\frac{7-11}{4-3}=-4$
The slope between $(4,7)$ and $(5,3)$ is $\frac{\text { rise }}{\text { run }}=\frac{3-7}{5-4}=-4$
(b)

\mathbf{x}	$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$
$\mathrm{F}(\mathrm{x})$	0	45	90	105

Answer: Non-linear
Explanation: The slope between $(0,0)$ and $(5,45)$ is $\frac{\text { rise }}{\text { run }}=\frac{45-0}{5-0}=9$.
However, the slope between $(10,90)$ and $(15,105)$ is $\frac{\text { rise }}{\text { run }}=\frac{105-90}{15-10}=\frac{15}{5}=3$
(c)

\mathbf{x}	$\mathbf{0}$	$\mathbf{1 0 0}$	$\mathbf{3 0 0}$	$\mathbf{6 0 0}$
$\mathrm{g}(\mathrm{x})$	20	120	320	620

Answer: This appears to be a linear function.

Explanation: Examining slopes between consecutive points.

The slope between $(0,20)$ and $(100,120)$ is $\frac{\text { rise }}{\text { run }}=\frac{120-20}{100-0}=\frac{100}{100}=1$

The slope between $(100,120)$ and $(300,320)$ is $\frac{\text { rise }}{\text { run }}=\frac{320-120}{300-100}=\frac{200}{100}=1$

The slope between $(300,320)$ and $(600,620)$ is $\frac{\text { rise }}{\text { run }}=\frac{600-300}{620-320}=1$

Extra credit: [4 pts] Consider the three points: $\mathrm{A}=(1,3), \mathrm{B}=(-1,2)$, and $\mathrm{C}=(4,5)$. Can these points lie on the same straight line? Explain!

Solution: We will compute the slope of the line joining A and B; then compute the slope of the line joining B and C.

$$
\begin{aligned}
& m_{A B}=\frac{\text { rise }}{\text { run }}=\frac{2-3}{-1-1}=\frac{1}{2} \\
& m_{B C}=\frac{\text { rise }}{\text { run }}=\frac{5-2}{4-(-1)}=\frac{3}{5}
\end{aligned}
$$

Since these two slopes are different, the points A, B, C cannot be collinear.

There is a very fine line between loving life and being greedy for it.

