1. [4 pts] Consider the line L given by the equation $y=-3+0.2 \mathrm{x}$

Find the slope and both intercepts of L .
Solution: If we write the line in the form $y=m x+b$, we find that m, the slope, is 0.2 and the y-intercept is -3 . To find the x intercept, set $y=0$ in the equation $y=-3+0.2 x$. So $0=-3+0.2 x$, from which it follows that $x=15$.

Answers: Slope $=0.2$
x-intercept $=15$
y-intercept $=-3$
2. [4 pts] Find an equation for the line that is perpendicular to the line $\mathrm{y}=-13+\frac{1}{3} \mathrm{x}$ and passes through the point $\mathrm{C}=(4,-2)$.

Solution: Since the slope of the given line is $1 / 3$, the slope of a perpendicular curve is -3 .
Thus, using point slope form, $y-(-2)=-3(x-4)$, or equivalently: $y+2=-3(x-4)$
3. [4 pts] Write an equation of the line that has x-intercept equal to 5 and y-intercept equal to -7 .

Solution: Basically we are given that $P=(5,0)$ and $Q=(0,-7)$ are points on the line.
Thus $m=\frac{\Delta y}{\Delta x}=\frac{-7-0}{0-5}=\frac{7}{5}$
Using point-slope form:

$$
y=\frac{7}{5} x-7
$$

4. [4 pts] Write an equation of the line that is parallel to $4 \mathrm{x}-3 \mathrm{y}=1789$ and passes through the point $\mathrm{P}=(3,4)$.

Solution: Writing the given line in slope-intercept form:

$$
y=\frac{4}{3} x-\frac{1789}{3}
$$

So we see that the slope of the given line is $m=\frac{4}{3}$.
Writing the parallel line in point-slope form: $\boldsymbol{y}-\mathbf{4}=\frac{4}{3}(\boldsymbol{x}-3)$ or, equivalently, $y=\frac{4}{3} x$
5. [1 pt] Which (if any) of the following relations are actually functions? List all of those relations given below that are actually functions. (Note: there may be none, exactly one, or more than one.)

ANSWER: Only W is a function
6. [1 pt] Which (if any) of the following relations are actually functions? List all of those relations given below that are actually functions. (Note: possibly none, possibly only 1 , possibly $2, \ldots$)

w.

x.

Y.

z.

ANSWER: Only Z is a function
7. [1 pt] Which (if any) of the following relations are actually functions? List all of those relations given below that are actually functions. (Note: possibly none, possibly only 1 , possibly $2, \ldots$)

x	$f(x)$	x	$f(x)$	x	$f(x)$	x	$f(x)$
0	-1	-1	0	-1	3	3	-1
-1	0	0	1	0	1	1	0
0	1	1	0	1	3	3	1
3	2	0	-1	2	5	5	2
W.		X.		Y.		Z.	

ANSWER: Only Y is a function
8. [1 pt] Which (if any) of the following graphs represent functions? List all of the graph given below that are actually functions. (Note: possibly none, possibly only 1 , possibly $2, \ldots$)

ANSWERS: W, X, and Y are functions

Extra Credit [4 pts]

The following curve is actually a straight line "in disguise." Find its slope.

$$
2(1-x)+3(x+5(x-2))=(x+1)^{2}-\left(x+x^{2}\right)+1+y
$$

Solution:

Simplifying the left-hand side:

$$
\begin{gathered}
2(1-x)+3(x+5 x-10)=(x+1)^{2}-\left(x+x^{2}\right)+1+y \\
2(1-x)+3(6 x-10)=(x+1)^{2}-\left(x+x^{2}\right)+1+y \\
2-2 x+18 x-30=(x+1)^{2}-\left(x+x^{2}\right)+1+y \\
2-2 x+18 x-30=(x+1)^{2}-\left(x+x^{2}\right)+1+y \\
16 x-28=(x+1)^{2}-\left(x+x^{2}\right)+1+y
\end{gathered}
$$

Expanding $(x+1)^{2}$:

$$
16 x-28=x^{2}+2 x+1-\left(x+x^{2}\right)+1+y
$$

Simplifying the right-hand side:

$$
\begin{gathered}
16 x-28=x^{2}+2 x+1-x-x^{2}+1+y \\
16 x-28=x+2+y
\end{gathered}
$$

Solving for y:

$$
\begin{aligned}
& 15 x-30=y \\
& y=15 x-30
\end{aligned}
$$

Since the equation is now in slope-intercept form, we see that its slope is 15 .

The supreme accomplishment is to blur the line between work and play.

