MATH 117 PRACTICE TEST III 5 APRIL 2018

The limits of my language mean the limits of my world.
Ludwig Wittgenstein, Tractatus Logico-Philosophicus (1922)

1. Find the *domain* of the functions

(a)
$$f(x) = 2016x + \sqrt{x^2 + x + 11}$$

(b) $f(x) = \frac{x(x-3)(x-5)}{x+99}$

2. Show that x = 1 is a root of the polynomial $p(x) = x^3 - 4x^2 - 13x + 16$. Then find the quotient when p(x) is divided by x - 1.

3. Consider the function $g(x) = x^4 - 7x^2 - 6x$. Circle the numbers below that are roots of g. (There may be several or perhaps none.) Show your work.

(a) 0 (b) 1 (c) -1 (d) 2 (e) -2 (f) 3 (g) -3 (h) 7

4. Divide $p(x) = x^6 - 3x^5 + 2x^4 - x + 13$ by $x^2 - x + 3$.

$Quotient = _$	 	
Remainder =		

5. Let $g(x) = 2x^2 + x + 1$. Find and *simplify* the expression

$$\frac{g(2+h) - g(2)}{h}$$

6. [University of Michigan precalculus final exam] In this problem, the constants *a*, *b*, *c*, and *d* are all positive and different from each other. Consider the function:

$$G(x) = \frac{x^2(x+3)}{(x^2+9)(x+13)}$$

- (a) What is the y-intercept of G? If there is not a y-intercept, write NONE.
- (b) Find all zeroes of G. If there are no zeroes, write NONE.
 - (c) Give the equation(s) of all vertical asymptote(s) of G. If there are none, write NONE.
- 7. Find the domain of each of the following functions. Explain!

(a)
$$y = \frac{(x+5)(x-7)(x+8)(x^2+4)}{(3x-11)(x-1)} + x^3 + 1$$

(b) $y = 17 + 79\sqrt{\frac{x+11}{8-x}}$

8. Let
$$F(x) = 31 - \frac{1}{x^3}$$
. Here is a plot of *F*.

(a) What is the *domain* of F?

- (b) What are the vertical asymptote(s)?
- (c) Find any horizontal asymptote(s).
- (d) What is the range of F?

9. Suppose that $h(x) = 1 + \sqrt{\frac{x+3}{x+1} + 9}$ (a) If $f(x) = 1 + \sqrt{x+9}$

find a function g such that $h = f \circ g$

(b) If $f(x) = 1 + \sqrt{x}$

find a function g such that $h = f \circ g$

10. If
$$g(x) = \sqrt{\frac{x+3}{x+1} + 9}$$

find a function f such that $h = f \circ g$

11. Suppose that
$$h(x) = \sqrt{\frac{4}{x^2 + 7}} + 13$$

12. If $f(x) = \sqrt{x}$ find a function g such that $h = f \circ g$

13. If
$$f(x) = \sqrt{x+13}$$
 find a function g such that $h = f \circ g$

14. If
$$g(x) = \frac{1}{x^2 + 7}$$
 find a function f such that $h = f \circ g$

- 15. How many real roots does each of the following equations possess? (Hint: These questions require very little calculation.)
 - (a) $(x-1)(x+5)(x^2+13)^4 = 0$
 - (b) $5x^2 4x + 1 = 0$

(c)
$$x^2 - 4x - 1 = 0$$

(d)
$$3x^2 - 4x + 8 = 0$$

- (e) $(x^4 + 2)(x + 1)(x^2 9) = 0$
- 16. Find functions f and g, each simpler than the given function h, such that $h = f \circ g$.
 - (a) $h(x) = \sqrt{2x+1}$

(b)
$$h(x) = (x^4 + 4)^{13}$$

$$(c) \quad h(x) = \frac{5}{x+99}$$

$$(d) \quad h(x) = \sqrt{\frac{x+4}{x+3}}$$

- 17. Factor fully each of the following:

 - (a) $x^3 + x^2 7x + 2$ given that x = 2 is a root (b) $x^4 + 6x^3 68x^2 150x 77$ given that x = -1 is a root of multiplicity 2
 - (c) $x^3 8$ given that x = 2 is a root
 - (d) $x^5 + 1$ given that x = -1 is a root
- 18. Find an equation of a polynomial that has zeroes at x = 1, 4, 5 and has y-intercept of 11.

19. (a) Without actually dividing, explain why x + 3 is a factor of $x^3 + 6x^2 + 11x + 6$

- (b) Explain why x 1 is a factor of $32x^{74} 33x^{33} + 1$
- 20. Multiply the following two polynomials:

 $p(x) = 3x^3 - 4x^2 + x + 1$ $q(x) = x^5 + x^3 + 3x^2 + 1$

21. Consider the polynomial

$$y = f(x) = -x^{2}(x-2)^{4}(x-3)^{5}(x-5)(x^{2}+x+1)$$

- (a) The domain of f is:
- (b) The zeroes of the polynomial are:
- (c) What happens to y as $x \to \infty$?
- (d) What happens to y as $x \to -\infty$?

22. Consider y = f(x), a rational function that has the graph below:

- (a) List the zeroes.
- (b) List the singularities.
- (c) List the horizontal asymptotes.
- (d) List the vertical asymptotes.
- 23. Perform polynomial division. What is the quotient? What is the remainder?

(a)
$$\frac{x^3 - 3x^2 + x + 4}{x + 1}$$

(b)
$$\frac{x^3 - x^2 + x + 4}{x^2 + x + 1}$$

- 24. Find the quotient when $x^3 4x^2 + 5x + 6$ is *divided* by x 2.
- 25. What are the roots of the polynomial $p(x) = x^3 2x^2 23x + 24$? *Hint:* Since p(1) = 0, x = 1 is a root of this polynomial.

- 26. For which value(s) of *c* will the following polynomial be divisible by x 3? P(x) = $3x^4 - cx^2 + 3x - 72$
- 27. Consider the following two rational functions:

$$r(x) = \frac{x}{x^2 + 4}$$
 and $s(x) = \frac{2}{2x - 3}$

Express each of the following as a rational function. Simplify.

- (a) r(x) + 3 s(x)
- (b) $(s(x))^2$
- (c) (rs)(x)
- (d) $r \circ s(x)$
- (e) $s \circ r(x)$
- 28. Find a polynomial p(x) that has roots 1, 2, -3, -4 and satisfies the property that p(-1) = 5.
- 29. Explain the significance of the *discriminant of a quadratic expression* $Ax^2 + Bx + C$. Give examples of each of the three *types* of discriminants and their relationship to the corresponding graph of the parabola.
- 30. *How many real roots* does each of the following equations possess? (*Hint:* These questions require very little calculation.)
 - (f) $(x-1)(x+5)(x^2+13)^4 = 0$
 - (g) $5x^2 4x + 1 = 0$
 - (h) $x^2 4x 1 = 0$
 - (i) $3x^2 4x + 8 = 0$
 - (j) $(x^4 + 2)(x + 1)(x^2 9) = 0$

31. Let $p(x) = x^2 + x - 2$ and $q(x) = x^2 + 1$. Compute and simplify each of the following:

- (a) 4p (x)
- (b) (p+q)(x)
- (c) (p-q)(x)
- (d) (3p + 5q) (x)
- (e) (pq) (x)
- (f) $p \circ q(x)$
- (g) $q \circ p(x)$
- (h) $q \circ q(x)$
- (i) p(x + 1) p(x)
- 32. If p and q are polynomials, in general, what can be said of deg(p + q), deg(p q), deg(pq)

- 33. What is meant by the "dominant term" of a polynomial? What does this term tell us about the graph of the polynomial?
- 34. What is meant by "zero" of a polynomial?
- 35. Let $p(x) = (x 2)^2(x^2 + x + 1)^3(x^2 14x + 45)$
 - (a) What is the degree of p?
 - (b) Find all the zeroes of *p*.
- 36. Graph each of the following polynomials. Focus primarily upon the qualitative behavior of the graph instead of plotting points.
 - (a) F(x) = 2x + 5
 - (b) $y = x^2 9$
 - (c) $G(x) = 1 + x^4$
 - (d) $h(x) = (x + 1)^3 + 2$
 - (e) $q(x) = x^2 (x 1)^2$
 - (f) F(x) = (x + 2)(x + 3)(x + 4)
- 37. Find the zeroes of the polynomial $f(x) = x^6 8x^3 + 15$. Hint: Let $z = x^3$; then solve for z.
- 38. Find all zeroes of the polynomial $g(x) = x^8 1$ Hint: Factor as difference of squares several times.
- 39. Find a number *b* such that 4 is a zero of the polynomial

$$p(x) = x^3 - 2x^2 + bx + 1.$$

- 40. Find a polynomial of third degree having roots (i.e., zeroes) of 1, 7, 11.
- 41. Let $p(x) = x^3 2x^2 + x$. For each given point, determine if it lies *on* the graph, *above* the graph, or *below* the graph of y = p(x).

(a) (1, 1), (b) (2, 1), (c) (3, 12), (d) (-1, -5)

- 42. Which (if any) of the following polynomials have x 1 as a factor?
 - (a) $x^9 1$
 - (b) $x^6 x^3 + 4x^2 13x + 9$
 - (c) $2x^{13} 4x + 3$
 - (d) $x^{2014} 5x + 4$
 - 43. For each of the following polynomials find at least one linear factor. *Hint:* Use the Factor Theorem.
 - (a) $x^3 4x 3$
 - (b) $x^4 9x + 2$
 - (c) $x^3 2x^2 + 3x 18$

- (d) $x^5 + 32$
- (e) $x^{2018} b^{2018}$

44. (a) For which value(s) of c will the following polynomial be divisible by x - 2?

$$p(x) = x^3 - cx^2 + 5x - 1$$

(b) For which value(s) of c will the following polynomial be divisible by x + 3?

$$p(x) = x^3 + 5x^2 - 2x + c$$

- 45. Using the factor theorem, factor fully: $x^3 1$ and $x^3 + 1$.
- 46. Long division practice.

(a)
$$\frac{x^{3} + x^{2} + x + 4}{x + 1}$$

(b)
$$\frac{x^{4} + 5x + 4}{x^{2} + 2}$$

(c)
$$\frac{x^{4} + x^{2} - x + 5}{x^{4} + 2}$$

(d)
$$\frac{2x^{5} - x^{3} - 1}{2x^{2} - 1}$$

(e)
$$\frac{x^{5} - 1}{x - 1}$$

(f)
$$\frac{x^{4}}{x + 2}$$

- 47. Find the *domain* of each of the rational functions in question 46.
- 48. What is meant by *singularity* of a rational function?

50. Let
$$R(x) = \frac{5x^8 + x^7 + 14x + 21}{3x^8 + 33x^6 - 5x^4 + x + 11}$$
. What is the approximate value of $R(10^{10})$?

What about $R(-10^{10})$?

51.

MATCHING GRAPHS Match the function with its graph.

52. Match

53. Match.

MULTIPLE CHOICE Which of the following functions is graphed?

$\textcircled{\textbf{A}} y = \frac{-5x^2}{x^2 + 9}$	$\textcircled{B} y = \frac{5x^2}{x^2 - 9}$
$\textcircled{\textbf{C}} y = \frac{5x^2}{x^2 + 9}$	(D) $y = \frac{-5x^2}{x^2 - 9}$

			ł	4	y.	ł		
				-		1		
-				\langle	Ζ	Т		-
-					1	21		x
						1		
-	—	F	-			÷		-
						ł		
						i	/	
		1		,	r	i	F	

54. For each of the following functions, determine *domain*, *zeroes*, *singularities*, *limiting behavior* for large |x|, and perform a *sign analysis*. Sketch the curve indicating any and all horizontal and vertical asymptotes.

(a) y = (x-1)(x-2)(x-3)

(b)
$$y = (x-1)^2 (x-2)^3 (x-3)$$

(c)
$$y = x^4 (x + 5)^2 (x - 3)^4$$

(d) $y = \frac{1}{x+3}$ (e) $y = \frac{x-2}{x+1}$ (f) $y = \frac{x-2}{x^2+1}$ (g) $y = \frac{(x-1)(x-2)}{x-3}$

(h)
$$y = \frac{x(2x-1)^2(x-2)}{(x-3)^3}$$

(i) $y = \frac{(x^2+1)(x-6)(x-8)^2}{(x-3)(x-9)}$
(j) $y = \frac{1}{(x-1)(x+2)(x-4)}$
(k) $y = \frac{(x+5)^4(x-2)^6}{(x-1)^9}$

55.

Find the vertical asymptotes, horizontal asymptote, domain and range of the following functions.

7.
$$f(x) = \frac{12}{x+7} - 8$$

8. $f(x) = \frac{-3x+2}{-4x-7}$
9. $f(x) = \frac{x-1}{x+5}$

56.

Sketch a graph of
$$f(x)=rac{(x+2)(x-3)}{\left(x+1
ight)^2\left(x-2
ight)}.$$

57.

Given the function $f(x) = \frac{(x+2)^2(x-2)}{2(x-1)^2(x-3)}$, use the characteristics of polynomials and rational functions to describe its behavior and sketch the function.

- George Bernard Shaw