Math 115 - Team Homework Assignment \#1, Winter 2016

- Due Date: January 19 or 20 (Your instructor will tell you the exact date and time.)
- Note: All problem, section, and page references are to the course textbook, which is the 6 th edition of Calculus: Single Variable by Hughes-Hallett, Gleason, McCallum, et al.
- Remember to follow the guidelines from the "Doing Team Homework" and "Team HW Tutorial" links in the sidebar of the course website.
- Do not forget to rotate roles and include a reporter's page each week.
- Show ALL your work.

1. Let $f(z), g(z), u(z)$, and $v(z)$ be functions satisfying the following properties:

- $f(z)$ is an exponential function.
- $g(z)$ is an invertible function.
- $u(z)=f(z) g(z)$ for all z in the domain of u.
- $v(z)=g^{-1}(f(z))$ for all z in the domain of v.
(a) Some values of the functions f, g, u, and v are given in the table below. Fill in the missing values in the table.

z	$f(z)$	$g(z)$	$u(z)$	$v(z)$
1	$?$	$?$	18	$?$
2	6	$?$	$?$	$?$
3	$?$	$?$	$?$	3
5	$?$	3	144	2

(b) Using the information from part (a), write a formula for $f(z)$.
2. Joey drives for exactly 4 hours non-stop from his apartment to his grandma's house (where his trip ends). Let $G(m)$ be the total number of gallons of gas his car has used in the first m minutes of his trip.
(a) Interpret the equation $G(45)=1.7$ in the context of this problem. (Remember to use a complete sentence and include units.)
(b) What is the domain of the function G ?
(c) Why is it reasonable to assume that G is an invertible function?
(d) Interpret the equation $G^{-1}(2.1)=60$ in the context of this problem. (Again, remember to use a complete sentence and include units.)
(e) Let $Q(h)$ be the total number of quarts of gas Joey's car has used in the first h hours of his trip. Write a formula for $Q(h)$ in terms of G and h. (Recall that there are 4 quarts in 1 gallon.)
3. Abby and Bobby decide to work on their calculus homework together. Let $A(t)$ be the percentage of Abby's homework remaining t hours after they start working, and let $B(t)$ be the percentage of Bobby's homework remaining t hours after they start working.
(a) Interpret the equation $B\left(A^{-1}(50)\right)=47.1$ in the context of this problem. (Remember to use a complete sentence and include units.)
(b) The chart below gives the values of $A(t)$ and $B(t)$ at three times t. The function values shown are accurate to one decimal place.

t	$A(t)$	$B(t)$
0	100.0	100.0
1	71.2	74.1
3	36.1	22.3

Suppose that each of $A(t)$ and $B(t)$ is either exponential or linear. Using the above chart, find formulas for $A(t)$ and $B(t)$, and indicate whether each is a linear or exponential function.
4. The graph of a function h is shown to the right:

(a) The graph of a function j is shown to the right:

Write a formula for the function $j(x)$ in terms of h and x.
(b) Suppose $k(x)=\frac{1}{2} x+1$, and let n be the function defined by $n(x)=3 h(k(x))$. Sketch a graph of $n(x)$, and write a piecewise-defined formula for $n(x)$.

