Math 115-Team Homework Assignment \#4, Winter 2016

- Due Date: February 23 or 24 (Your instructor will tell you the exact date and time.)
- Note: All problem, section, and page references are to the course textbook, which is the 6 th edition of Calculus: Single Variable by Hughes-Hallett, Gleason, McCallum, et al.
- Remember to follow the guidelines from the "Doing Team Homework" and "Team HW Tutorial" links in the sidebar of the course website.
- Do not forget to rotate roles and include a reporter's page each week.
- Show ALL your work.

1. Some values of differentiable functions f and g and their derivatives are shown in the table below.

t	1	3	5
$f(t)$	2	5	-1
$f^{\prime}(t)$	3	1	-2
$g(t)$	6	9	13
$g^{\prime}(t)$	0.5	2	4

Evaluate each of the following derivatives.
(a) $\left.\frac{d}{d t}(f(t)+2 g(t))\right|_{t=5}$
(e) $\left.\frac{d}{d t}\left(\frac{t^{2}+t}{f(t)}\right)\right|_{t=1}$
(b) $\left.\frac{d}{d t}(t g(t))\right|_{t=1}$
(f) $\left.\frac{d}{d v}\left(\frac{2^{v}-v g(v)}{f(1) g(v)+g(3)}\right)\right|_{v=5}$
(c) $\left.\frac{d}{d t}(f(t) f(t+2))\right|_{t=3}$
(g) $g^{\prime}(f(3))$
(d) $\left.\frac{d}{d t}\left(\frac{f(t)}{g(t)}\right)\right|_{t=3}$
(h) $h^{\prime}(3)$ if $h(p)=p f(p) g(p)$
2. Consider the piecewise-defined function

$$
g(w)= \begin{cases}2 e^{w}+5 & \text { if } w<0 \\ 2 w^{2}+A w+B & \text { if } w \geq 0\end{cases}
$$

where A and B are unknown constants.
Note: To gain insight into this problem, it may be useful to consider the graph of the function g for different values of A and B.
For each of the following, justify your answer.
(a) Find values for A and B so that $g(w)$ is continuous and differentiable at $w=0$. If no such values exist, explain why.
(b) Find values for A and B so that $g(w)$ is continuous but NOT differentiable at $w=0$. If no such values exist, explain why.
(c) Find values for A and B so that $g(w)$ is differentiable but NOT continuous at $w=0$. If no such values exist, explain why.
(d) Find values for A and B so that $g(w)$ is differentiable, and $g^{\prime}(w)$ is continuous and differentiable at $w=0$. If no such values exist, explain why.
3. Let $h(x)$ be a twice differentiable ${ }^{1}$ function defined on the interval $0<x<6$. The graph of $y=h^{\prime \prime}(x)$ is shown below.

(a) When (i.e. over what intervals) is $h(x)$ concave up? When is $h(x)$ concave down?
(b) When is $h^{\prime}(x)$ concave up? When is $h^{\prime}(x)$ concave down?
(c) When is $h^{\prime}(x)$ increasing? When is $h^{\prime}(x)$ decreasing?

A new function $j(x)$ is defined by the equation

$$
j(x)=2 h(x)-x^{2}+5 x .
$$

(d) When is $j(x)$ concave up? When is $j(x)$ concave down?
4. Let $r(x)=4 e^{x-2}-2 x+3$. [Recall that $e^{x-2}=\frac{1}{e^{2}}\left(e^{x}\right)$.]
(a) Find a formula for the tangent line to the graph of $y=r(x)$ at $x=2$.
(b) Find all values $c \neq 2$ (if any exist) such that the tangent line to the graph of $y=r(x)$ at $x=c$ is parallel to the tangent line to the graph at $x=2$. Justify your answer.
(c) Find all values c (if any exist) such that the tangent line to the graph of $y=r(x)$ at $x=c$ is perpendicular to the tangent line to the graph at $x=2$. Justify your answer.

[^0]
[^0]: ${ }^{1}$ We say that a function is twice differentiable if it is differentiable and its derivative is also differentiable.

