Math 115 - An Example of Classifying Critical Points

Problem: Find the x-coordinates of all local maxima and local minima of the function $f(x)$ defined below. You must use calculus to find and justify your answers.

$$
f(x)=x^{5}-10 x^{3}-8
$$

One possible complete solution to this problem is shown below.
To find local extrema, we first find the critical points of f.

$$
f^{\prime}(x)=5 x^{4}-30 x^{2}=5 x^{2}\left(x^{2}-6\right)
$$

So $f^{\prime}(x)=0$ when $5 x^{2}\left(x^{2}-6\right)=0$

$$
5 x^{2}=0 \text { or } x^{2}-6=0
$$

$$
x=0 \text { or } x= \pm \sqrt{6}
$$

Note that f is differentiable every where, so these are the only critical pts. We apply the first derivative test to classify them

$$
f^{\prime}(x)=5 x^{2}\left(x^{2}-6\right)
$$

SMote: $5 x^{2}>0$ for all nonzero
$*\left\{\begin{array}{l}\text { For } x<-\sqrt{6}, x^{2}-6>0, \text { so } f^{\prime}(x)=(\text { positive \#). (positive \#) }>0 \\ \text { For } x>\sqrt{6}, x^{2}-6>0, \text { so } f^{\prime}(x)=\left(\begin{array}{l}\text { positive \#) }(\text { positive \# }\end{array}\right)>0\end{array}\right.$ For $-\sqrt{6}<x<0, \quad x^{2}-6<0$, so $f^{\prime}(x)=($ positive \#). $($ negative $\#)<0$ For $0<x<\sqrt{6}, x^{2}-6<0$, so $f^{\prime}(x)=($ positive $\#) \cdot($ negative $\#)<0$

By the first derivative test, we thus find that f has a - local maximum at $x=-\sqrt{6}$

- local minimum at $x=\sqrt{6}$
(critical point but no local extremum at $x=0$)
* An alternative justification:

The sign of f^{\prime} can only change at
$x=-\sqrt{6}, x=0$, and $x=\sqrt{6}$
So, we choose a test point within each interval
$f^{\prime}(-3)=5(-3)^{2}\left((-3)^{2}-6\right) \quad f^{\prime}(-1)=5(-1)^{2}\left((-1)^{2}-6\right) \quad f^{\prime}(1)=5(1)^{2}\left(1^{2}-6\right) \quad f^{\prime}(3)=5(3)^{2}\left(3^{2}-6\right)$
$=5(9)(3)=145>0=5(-5)=-25<0=5(-5)=-25<0 \quad=5(9)(3)=145>0$
$f^{\prime}>\left.0\right|_{-\sqrt{6}} ^{f^{\prime}=0} f^{\prime}<\left.0\right|_{0} ^{f^{\prime}=0}<\left.0\right|^{\prime}>0 \quad f^{\prime}=0$

Under the time pressure of an exam, appropriate justification might look something like this.

$$
\begin{array}{ll}
f^{\prime}(x)=5 x^{4}-30 x^{2}=5 x^{2}\left(x^{2}-6\right) \\
\frac{f^{\prime}(x)=0}{5 x^{2}\left(x^{2}-6\right)}=0 & \frac{f^{\prime}(x) D N E}{} \\
x=0, x= \pm \sqrt{6} & \text { No such } x
\end{array}
$$

$$
\begin{array}{ll}
x<-\sqrt{6}: & f^{\prime}(x)=+\cdot+=+ \\
-\sqrt{6}<x<0: & f^{\prime}(x)=+--=- \\
0<x<\sqrt{6}: & f^{\prime}(x)=+\cdots=- \\
\sqrt{6}<x: & f^{\prime}(x)=+\cdot+=+
\end{array}
$$

By the first derivative test,

A few key features of this solution:

$$
f^{\prime}(x)=5 x^{4}-30 x^{2}=5 x^{2}\left(x^{2}-6\right)
$$

Find critical
points algebraically $\rightarrow \begin{aligned} & f^{\prime}(x)=0 \\ & 5 x^{2}\left(x^{2}-6\right)=0 \\ & x=0, x= \pm \sqrt{6}\end{aligned}$

$$
\begin{array}{ll}
x<-\sqrt{6}: & f^{\prime}(x)=+++=+ \\
-\sqrt{6}<x<0: & f^{\prime}(x)=+--=- \\
0<x<\sqrt{6}: & f^{\prime}(x)=+-=- \\
\sqrt{6}<x: & f^{\prime}(x)=+++=+
\end{array}
$$

Indicate the reasoning By the first derivative test, for the eventual "+" on the number line.

Clear
final answer
f has a local max at $x=-\sqrt{6}$
local min at $x=\sqrt{6}$
$\binom{$ critical pt but no local }{ extremum at $x=0}$

Under the time pressure of an exam, appropriate
justification might look something like this.
find critical

$$
\underbrace{\begin{array}{l}
\text { find critical } \\
\text { points } \\
\text { algebraically }
\end{array}} \begin{array}{ll}
f^{\prime}(x)=5 x^{4}-30 x^{2}=5 x^{2}\left(x^{2}-6\right) \\
\frac{f^{\prime}(x)=0}{5 x^{2}\left(x^{2}-6\right)}=0 \\
x=0, x= \pm \sqrt{6}
\end{array} \quad \frac{f^{\prime}(x) \text { NE }}{\text { No such } x} \text {, }
$$

$$
\begin{aligned}
& f^{\prime}(-3)=145 \\
& f^{\prime}(-1)=-25 \\
& f^{\prime}(1)=-25
\end{aligned}
$$

Indicate the reasoning for" " the eventual "t"
on the number line
I By the first derivative test,
Note:

$$
\prime^{\prime \prime}(3)=145^{\prime \prime}
$$

or " $f^{\prime}(3)=+\cdot+=+"$

Clear final answer \rightarrow

f has a	local max at $x=-\sqrt{6}$
	local min at $x=\sqrt{6}$
	$\binom{$ critical pt but no local }{ extremum at $x=0}$

is okay, but " $f^{\prime}(3)>0$ " is not sufficient

