MATHEMATICA LAB II

(Lab report due: Wednesday, Oct $30^{\text {th }}$)
First read the following sections (pp $20-24$) of Thomas’ An Introduction to Mathematica.

- Built-in commands and constants
- Command options and additional plots

Submit a printed version of your Mathematica notebook. You may (and are encouraged to) work with other students and compare results, but ultimately you must submit your own lab results --- not a shared copy. On your front page (using Mathematica) state your name and "Mathematica Lab II" using an appropriate style, font, size and color. Number each problem and restate the problem before giving the solution. Use Mathematica input, not free-form input!

1. Plot the curve $y=x^{2} \sin \left(1 / x^{2}\right)$. What happens near $\mathrm{x}=0$? What happens as $\mathrm{x} \rightarrow \infty$? Justify your answers by referring to appropriate versions of your graphs. (You may wish to use at least two different domains to answer these questions.)
2. Let $f(x)=x^{4}-\pi x^{3}-19.93 x^{3}+156.567 x^{2}-391.693 x+303.242$
(a) Plot $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and, using the graph, determine the number of roots of this polynomial. Explain how you reached this conclusion.
(b) Using the NSolve command, find all the real roots of this polynomial.
3. Graph the curve $\mathrm{y}=|\mathrm{x}| \cos (1 / \mathrm{x})$.
(a) Graph the two curves $\mathrm{y}=|\mathrm{x}| \cos (1 / \mathrm{x})$ and $\mathrm{y}=\mathrm{x} / 2$ for several different domains. (Use the built-in function Abs[]$)$
(b) Viewing this graph, how many solutions do you think the equation $|x| \cos (1 / x)=x / 2$ has?
(c) Using NSolve, can you find a solution? What happens?
(d) Using FindRoot, find 5 positive solutions.
4. Compare logarithmic growth with linear growth by plotting the two curves, $(\ln x)^{7}$ and x on the same set of axes. Which function tends to infinity faster (as $x \rightarrow \infty) ?: \quad(\ln x)^{7}$ or x ?

Note: Be careful in choosing your domain. Explain why your answer is correct by viewing the plot.
5. Let $g(x)=x+4 \sin x$.
(a) Find equations of the tangent and normal lines to $y=g(x)$ at $\mathrm{x}=4$ (either by hand or using Mathematica).
(b) Graph (on the same pair of axes) the curve $\mathrm{y}=\mathrm{g}(\mathrm{x})$ together with its tangent and normal lines at $\mathrm{x}=4$. (You may wish to use AspectRatio \rightarrow Automatic to make sure that the tangent and normal lines actually appear to be perpendicular.)

If a lion could talk, we could not understand him.

- Ludwig Wittgenstein

