PRACTICE PROBLEMS FOR QUIZ I (Revised)

1. Label each of the following functions as "odd", "even" or "neither odd nor even." (You need not justify your answers.)
(a) $y=\ln \left(1+x^{4}\right)+1 /\left(1+x^{2}\right)$
(b) $y=x^{3}+\sin \left(x^{5}\right)+x \cos x$
(c) $\mathrm{y}=1+\mathrm{x}^{2}+\mathrm{x}^{3}$
(d) $y=x^{5} \cosh x$
(e) $y=(x+\sinh x)^{2}$
2. For which non-zero value of k will the following quadratic equation have only one real root?

$$
7 \mathrm{x}^{2}+\mathrm{kx}+3 \mathrm{k}=0
$$

3. Consider the following rational functions. For each function, determine the limiting behavior as $\mathrm{x} \rightarrow \infty$. Briefly explain how you arrived at your answers.
(a) $y=\frac{(2 x-5)^{2}}{x^{2}}$

Answer: \quad As $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow$
(b) $y=\frac{(x+5)^{2}(x-11)^{3}}{(x-9)(x+13)(x-1)(7 x-44)}$
(c) $y=\frac{99(x-15)(3 x+11)}{(x-9)^{2}(19 x+13)}$
4. Find an equation of a rational function whose graph is given below:

5. Sketch the graph of the following function (that includes all the significant properties):

$$
f(x)=\frac{(x-3)^{2}(x-4)^{3}(x-5)^{5}}{x^{2}\left(2 x^{2}+x+1\right)^{4}}
$$

6. Using an appropriate table (for example, letting $x=0.1,0.01,0.001$, etc.) determine (to the nearest tenth) the behavior of the function $f(x)=(1+3 x)^{\frac{2}{x}}$ as x approaches 0 from the right. (Show your work!)

\boldsymbol{x}	$\boldsymbol{f}(x)$
1	
0.1	
0.01	
0.001	
0.0001	
0.00001	
0.000005	

7. Compute each of the following limits. (Explain your reasoning. You may use estimation techniques, tables, graphing calculators, etc.)
(a) $\lim _{x \rightarrow \infty} \frac{(x+11)^{2}(3 x-7)^{3}}{\left(2 x^{2}+4\right)^{4}(x+2015)}$
(b) $\lim _{x \rightarrow \infty} \frac{1+\sqrt{x}}{5+x^{2}}$
(c) $\lim _{x \rightarrow \infty} \frac{\sinh x+\cosh x}{e^{x}}$
(d) $\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{1}{x}\right)$
(e) $\lim _{x \rightarrow 2} \frac{\frac{1}{x}-\frac{2}{x^{2}}}{2-x}$
(f) $\quad \lim _{x \rightarrow 0}\left(e^{x^{2}}-x^{e^{2}}\right)$
(g) $\lim _{x \rightarrow 3 / 2} \frac{24 x^{3}+7 x^{2}-15 x}{4 x^{3}+4 x^{2}-15 x}$
8. Estimate the following limit by substituting appropriate values of x. (Show your results in tabular form. Give your answer to two decimal places.)

$$
\lim _{x \rightarrow 1} \frac{5^{x}-5}{x-1}
$$

9. Use the graph below to find approximate values for each of the following limits (if they exist).
(a) $\lim _{x \rightarrow-4} f(x)$
(b) $\lim _{x \rightarrow-1} f(x)$
(c) $\lim _{x \rightarrow 2} f(x)$
(d) $\lim _{x \rightarrow 6} f(x)$
(e) $\lim _{x \rightarrow-1+} f(x)$
(f) $\lim _{x \rightarrow 2^{-}} f(x)$

10. Calculate each of the following limits or explain why the limit does not exist. Justify each answer. If you use the Squeeze Theorem, be precise.
(a) $\lim _{x \rightarrow 3} \frac{x^{4}-11}{(x-3)^{4}}$
(b) $\quad \lim _{x \rightarrow 0} x^{8} \cos ^{4}(1 / x)$
(c) $\lim _{x \rightarrow \infty} \frac{\sin (\ln (5+x))}{x+1}$
(d) $\lim _{x \rightarrow 2} \frac{x^{4}-16}{x-2}$
11. Compute each of the following limits or explain why the limit fails to exist. Justify your reasoning. (A calculator solution earns only partial credit.)
(a) $\lim _{x \rightarrow 2-} \frac{x^{2}(x-2)(x+3)}{|x-2|}$
(b) $\lim _{x \rightarrow 1}\left(\frac{\frac{1}{x^{2}}-1}{x-1}\right)$
(c) $\lim _{x \rightarrow 0} \frac{x}{\cos 9 x}$
(d) $\lim _{x \rightarrow 0} \sin \frac{1}{x}$
(e) $\lim _{x \rightarrow \infty}\left(\frac{\sin x}{x}+\cos \left(\frac{13}{x}\right)\right)$
12. Consider the rational function F defined by $F(x)=\frac{15 x^{3}+x^{2}-6 x}{6 x^{2}+x-2}$
(a) Where is F undefined? (Hint: Your answer should consist of two x values.)
(b) Let p denote the smaller of the two numbers found in part (a). Is it possible to extend F to a function that is continuous at $\mathrm{x}=\mathrm{p}$? Explain.
(c) Let q denote the larger of the two numbers found in part (a). Is it possible to extend F to a function that is continuous at $\mathrm{x}=\mathrm{q}$? Explain.
13. Compute (showing your work):

$$
\lim _{x \rightarrow 0+}\left(\tanh \left(\frac{1}{x}\right)+e^{-\frac{1}{x}}+\frac{\sin \left(\frac{5}{x}\right)}{\ln x}\right)
$$

14. Does the following limit exist? Explain why or why not.

$$
\lim _{x \rightarrow 13} \frac{|3 x-39|}{x-13}
$$

15. Calculate each of the following limits. Briefly justify each answer.
(a) $\lim _{x \rightarrow 1} \frac{x^{8}-1}{x^{3}-1}$
(b) $\quad \lim _{x \rightarrow 0} x^{4} \cos (1 / x)$
(c) $\lim _{x \rightarrow \infty} x \sin (1 / x)$
16. Compute each of the following one-sided limits or explain why the limit doesn't exist.
(a) $\lim _{x \rightarrow 1+} \frac{x-1}{|x-1|}$
(b) $\lim _{x \rightarrow 1-} \frac{x-1}{|x-1|}$
17. Let $\mathrm{y}=\mathrm{g}(\mathrm{x})$ be defined as follows

$$
g(x)=\left\{\begin{array}{l}
3-x \text { when } x<2 \\
2 \text { if } x=2 \\
\frac{x}{2} \text { if } x>2
\end{array}\right.
$$

(a) Sketch the curve.
(b) Compute each of the following or explain why the limit fails to exist.
(i) $\lim _{x \rightarrow 2} g(x), \quad \lim _{x \rightarrow 2-} g(x)$, and $g(2)$
(ii) $\lim _{x \rightarrow 2} g(x)$
(iii) $\lim _{x \rightarrow-1-} g(x), \quad \lim _{x \rightarrow-1+} g(x)$
(iv) $\lim _{x \rightarrow-1} g(x)$
19. Which, if any, of the following functions possess a limit as $x \rightarrow 0$? Briefly explain.
(a) $y=1 / x$
(b) $y=\sin (1 / x)$
(c) $y=\ln x$
(d) $y=\exp (1 / x)$
(e) $y=\arctan \left(\frac{1}{x^{2}}\right)$
(f) $\lim _{x \rightarrow 0} \sqrt{\frac{\sin \left(x+\frac{\pi}{2}\right)}{(3 x+1)^{75}}}$
20. Does there exist a continuous extension to the curve

$$
g(x)=\frac{3 x^{2}-4 x+1}{x^{4}-1}
$$

at $x=1$? If so, find it; if not explain!
21. Classify the type of discontinuity for each of the following:
(a) $\frac{|x|}{x}$ at $x=0$
(b) $\cos \frac{1}{x}$ at $x=0$
(c) $\frac{1}{(x-3)^{4}}$ at $x=3$
(d) $\frac{2 x^{2}-9 x-35}{x-7}$ at $x=7$
(e) $\frac{12 x^{2}-7 x-10}{x-5}$ at $x=5$
22. Using an appropriate table, determine the behavior of the function $f(x)=x^{\ln x}$ as x approaches 0 from the right.

To be pleased with one's limits is a wretched state.

- Johann Wolfgang von Goethe (1749-1832)

