PRACTICE PROBLEMS FOR QUIZ IV

1. (a) Can you find a formula for $d / d x(f(x) g(x) h(x))$? Can you extend this to a product rule for four or more factors?
(b) Using your result from (a), compute $d / d x\left\{5\left(x^{3}\right)(\cos x)(\ln x) e^{x}\right\}$
(c) Find any and all critical points of the function: $y=\left(x^{2}+3\right)(x-5) e^{x}$
2. Let $\mathrm{F}(\mathrm{x})=\mathrm{x}^{3}(\mathrm{x}-1)(\mathrm{x}-2)$.
(a) Using precalculus techniques, sketch the curve $y=F(x)$.
(b) Using calculus, determine regions of increase, regions of decrease, local max $/ \mathrm{min}$.
(c) Explain the geometric significance of each of the three critical points.
3. Let $g(x)=x^{2} e^{x}$.
(a) Using precalculus techniques, sketch the curve $y=g(x)$.
(b) Using calculus, determine regions of increase, regions of decrease, local max $/ \mathrm{min}$.
4. State carefully the General Power Rule. Review its proof, that depends only upon the product rule.
5. Using the General Power Rule, when appropriate, find dy/dx for each of the following functons:
(a) $y=\left(1+x+x^{2}\right)^{2015}$
(b) $y=\sec ^{3} x$
(c) $y=\left(e^{x}+1\right)^{-3}$
(d) $y=\sqrt{\frac{a x+b}{c x+d}} \quad$ where a, b, c and d are non-zero constants. (Here you may
assume that $d / d x\left(x^{p}\right)=p x^{-1}$ for all real numbers p)
(e) $y=\tan ^{5} x$
(f) $\quad y=(\sinh x+\cosh x)^{1789}$
(g) $y=\frac{1}{x^{5}+99}$
6. State the Chain Rule.
7. Explain why $(\mathrm{d} / \mathrm{dx}) \ln \mathrm{x}=1 / \mathrm{x}$.
8. Using the Chain Rule, when appropriate, compute dy/dx for each of the following:
(b) $y=\sec \left(e^{x}+4 x+1789\right)$
(c) $y=e^{\tan x}$
(d) $\mathrm{y}=\ln (\mathrm{ax}+\mathrm{b})$, where a and b are positive constants.
(e) $y=(\ln x)^{4}$
(f) $y=\ln \left(x^{4}\right)$
(g) $y=\ln (\ln (x)$
(h) $\quad \mathrm{y}=\ln (\ln (\ln \mathrm{x}))$
(i) $y=\cosh (\sinh (3 x+1))$
(j) $y=\cos (\sec (x))$
(k) $y=\tan (1 / x)$
9. Let $\mathrm{y}=\mathrm{u}^{3}+1$ and $\mathrm{u}=5 \sin \mathrm{x}$. Using the chain rule, compute $\mathrm{dy} / \mathrm{dx}$
10. Let $\mathrm{z}=\sin \mathrm{u}$ and $\mathrm{u}=5+\mathrm{e}^{\mathrm{x}}$. Compute $\mathrm{dz} / \mathrm{dx}$.
11. Let $f(x)=e^{x^{2}}$. Compute $\mathrm{f}^{(2)}(\mathrm{x})$, the second derivative of f.
12. Let $g(x)=\cos (5 x)$. Compute $g^{(2015)}(x)$.
13. (a) Given $y=\frac{\ln x}{x}$, compute $\mathrm{d}^{2} y / \mathrm{dx}^{2}$.
(b) Given $y=5^{x}$, compute dy/dx.
(c) Given $\mathrm{y}=\log _{13} \mathrm{x}$, find dy/dx.
14. Sketch the graph of each of the following functions, using the first two stages of our plan.

Be sure to identify the domain first.
(a) $y=x+1 / x$
(b) $y=\sqrt{9-x^{2}}$
(c) $y=x^{10}-10 x$
(d) $\left.y=x^{3}+6 x^{2}+1\right]$
(e) $y=x^{3}+x^{5}+x^{7}$
(f) $y=x^{2}+\frac{1}{x^{2}}$
15. Using implicit differentiation, find $\mathrm{dy} / \mathrm{dx}$ for each of the following implicitly defined curves:
(a) $x y+x+y=y \sin x$
(b) $\tan \mathrm{x}+\sec \mathrm{y}=\mathrm{x}+\mathrm{y}+2015$
(c) $x^{4}-\tan x=e^{y}+1234$
16. Find an equation of the tangent line to the bifolium

$$
4 x^{4}+8 x^{2} y^{2}-25 x^{2} y+4 y^{4}=0
$$

at the point $\mathrm{P}=(2,1)$.

Who has not been amazed to learn that the function $y=e^{x}$, like a phoenix rising again from its own ashes, is its own derivative?

- Francois le Lionnais, Great Currents of Mathematical Thought, vol. 1, Dover Publications

I turn away with fright and horror from the lamentable evil of functions which do not have derivatives.

- Charles Hermite (in a letter to Thomas Jan Stieltjes)

