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MATH 161                Solutions:  QUIZ I         


1.   [10 pts] The graph of a rational function is shown below.  

Assume that

Zeros:   x = 0, x = 3
Singularities:    x = -2, x = -4
Limiting behavior:  y → 3 as |x| → ∞




Find an equation of a rational function that incorporates all of this information.  (Note that this problem may have more than one correct answer.)

Solution:  
Given the information about the zeros, we find that x and x + 3 must be factors of the numerator.   Given the information about the singularities, x + 2 and x + 4 must be factors of the denominator.
Since the zero at x = 0 does not create a sign change, we find that x2 or any even power of x, must a factor of the numerator.   Since the singularity at x = -4 also results in no sign change, we find that (x + 4)2 or any even power of x + 4, must be a factor of the denominator.
So our first guess is:
  

 

Noting that the value of y as x → ∞ is 1, we have only to make one change:







2. [5 pts each]  Compute each of the following limits.  (Explain your reasoning. You may use estimation techniques, tables, graphing calculators, etc.)


  


Solution:  Observe that:







  


Solution:  









   

Solution:  

Observe that, as long as x ≠ 5:











Solution:  We begin by rationalizing the numerator of the algebraic expression,








3. [10 pts] Does there exist a continuous extension to the curve  


at x = 1?   If so, find it;  if not explain!   (Hint:  Factor first.)

Solution:  Let’s begin by factoring, noting that the denominator is a difference of two squares.


 
Now, as x →1, we can cancel the x – 1 factor occurring both in the numerator and the denominator. So, for x ≠ 1


Now, as x →1, g(x) → 2/4 = ½ .
[bookmark: _GoBack]Thus x = 1 is a removable discontinuity, and we should assign the value of ½ to g(1).
 


4.  [3 pts each]  Identify the type of discontinuity that each of the following functions has at x = 0.  (Choose from: removable, infinite, jump, or essential discontinuity.)  You need not justify your answers.


(a)     

Solution:  Since the limit of y as x→0 from the right is ¼, but the limit of y as x→0 from the left is -¼, the discontinuity at x = 0 is a jump discontinuity.







(b)    


Solution:  Since the numerator tends toward 5 and the denominator tends toward 0, the limit does not exist. This is an infinite discontinuity





(c)     


Solution:  Since  it follows that y → 0 as x → 0.  Hence the discontinuity is removable.










(d)    


Since   the discontinuity is infinite.



Extra Credit:

(University of Michigan Calculus problem (first exam, 7 Oct 2014)
















O dear Ophelia!
I am ill at these numbers:
I have not art to reckon my groans.

- HAMLET (Act II, Sc. 2)
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Consider the function / defined by
60(a? — z)
@+DB-2)
e forz=2
5e —1 forz>2

forz<2
h@) =
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‘where a and ¢ are constants.
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Find values of a and ¢ so that both of the following conditions hold.
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o lim () exists.

 hz) s not continuous at x = 2.

Note that this problem may have more than one corvect answer. You only need to find one
wvalue of a and one value of ¢ so that both conditions above hold. Remember to show your
work clearly.
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Solution: In order for lim h(z) to exist, it must be true that lim h(z) = lim h(z).

60(22 - 2) " 2 i
ey~ o g i) =56~ 1. Soit ollows that

562 — 1= 24. Solving for a, we have
5 —1=214

Now lim_h(z)

2a.=1n(5)
n(5)/2 ~ 0.804.

When a = In(5)/2, limg . h(x) = 5e/2°2 = 5680) _1 = 24, So, & is not continuous
at x = 2 as long as limy_2h(z) # h(2). Since h(2) = ¢, we can choose ¢ to be any
number other than 24.
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