1. [10 pts] The graph of a rational function is shown below.

Assume that
Zeros: $\mathrm{x}=0, \mathrm{x}=3$
Singularities: $x=-2, x=-4$
Limiting behavior: $\mathrm{y} \rightarrow 3$ as $|\mathrm{x}| \rightarrow \infty$

Find an equation of a rational function that incorporates all of this information. (Note that this problem may have more than one correct answer.)

Solution:

Given the information about the zeros, we find that x and $x+3$ must be factors of the numerator. Given the information about the singularities, $x+2$ and $x+4$ must be factors of the denominator.
Since the zero at $x=0$ does not create a sign change, we find that x^{2} or any even power of x, must a factor of the numerator. Since the singularity at $x=-4$ also results in no sign change, we find that $(x+4)^{2}$ or any even power of $x+4$, must be a factor of the denominator.

So our first guess is:

$$
y=\frac{x^{2}(x-3)}{(x+2)(x+4)^{2}}
$$

Noting that the value of y as $x \rightarrow \infty$ is 1 , we have only to make one change:

$$
y=\frac{3 x^{2}(x-3)}{(x+2)(x+4)^{2}}
$$

2. [5 pts each] Compute each of the following limits. (Explain your reasoning. You may use estimation techniques, tables, graphing calculators, etc.)

$$
y=\frac{\left(x^{3}+11\right)^{2}(3 x-91)^{3}}{\left(2 x^{2}+5\right)^{4}(x+2015)}
$$

Solution: Observe that:
$\frac{\left(x^{3}+11\right)^{2}(3 x-91)^{3}}{\left(2 x^{2}+5\right)^{4}(x+2015)} \cong \frac{\left(x^{3}\right)^{2}(3 x)^{3}}{\left(2 x^{2}\right)^{4} x}=\frac{27}{16}\left(\frac{x^{9}}{x^{9}}\right) \rightarrow \frac{27}{16}$ as $x \rightarrow \infty$
(b) $\lim _{x \rightarrow 2} \frac{\frac{1}{x^{2}}-\frac{1}{4}}{x-2}$

Solution:

$$
\begin{aligned}
& \frac{\frac{1}{x^{2}}-\frac{1}{4}}{x-2}=\frac{\frac{4}{4 x^{2}}-\frac{x^{2}}{4 x^{2}}}{x-2}=\frac{4-x^{2}}{4 x^{2}(x-2)}= \\
& \frac{-(x-2)(2+x)}{4 x^{2}(x-2)}=\frac{-(2+x)}{4 x^{2}} \rightarrow-\frac{4}{16}=\frac{1}{4} \text { as } x \rightarrow 2
\end{aligned}
$$

(c) $\lim _{x \rightarrow 5} \frac{2 x^{2}-9 x-5}{x^{2}-8 x+15}$

Solution:
Observe that, as long as $x \neq 5$:

$$
\frac{2 x^{2}-9 x-5}{x^{2}-8 x+15}=\frac{(x-5)(2 x+1)}{(x-5)(x-3)}=\frac{2 x+1}{x-3} \rightarrow \frac{11}{2} \text { as } x \rightarrow 5
$$

(d) $\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x}$

Solution: We begin by rationalizing the numerator of the algebraic expression,

$$
\begin{aligned}
& \frac{\sqrt{x+4}-2}{x}=\left(\frac{\sqrt{x+4}-2}{x}\right)\left(\frac{\sqrt{x+4}+2}{\sqrt{x+4}+2}\right)=\frac{x}{(x)(\sqrt{x+4}+2)}= \\
& \frac{1}{\sqrt{x+4}+2} \rightarrow \frac{1}{\sqrt{4}+2}=\frac{1}{4} \text { as } x \rightarrow 0 .
\end{aligned}
$$

3. [10 pts] Does there exist a continuous extension to the curve

$$
g(x)=\frac{3 x^{2}-4 x+1}{x^{4}-1}
$$

at $\mathrm{x}=1$? If so, find it; if not explain! (Hint: Factor first.)
Solution: Let's begin by factoring, noting that the denominator is a difference of two squares.

$$
g(x)=\frac{(x-1)(3 x-1)}{\left(x^{2}+1\right)(x+1)(x-1)}
$$

Now, as $x \rightarrow 1$, we can cancel the $x-1$ factor occurring both in the numerator and the denominator. So, for $x \neq 1$

$$
g(x)=\frac{3 x-1}{\left(x^{2}+1\right)(x+1)}
$$

Now, as $x \rightarrow 1, g(x) \rightarrow 2 / 4=1 / 2$.

Thus $x=1$ is a removable discontinuity, and we should assign the value of $1 / 2$ to $g(1)$.
4. [3 pts each] Identify the type of discontinuity that each of the following functions has at $x=0$. (Choose from: removable, infinite, jump, or essential discontinuity.) You need not justify your answers.

$$
\text { (a) } y=\frac{|x|}{4 x}
$$

Solution: Since the limit of y as $x \rightarrow 0$ from the right is $1 / 4$, but the limit of y as $x \rightarrow 0$ from the left is $-1 / 4$, the discontinuity at $x=0$ is a jump discontinuity.

(b) $y=\frac{|x+5|}{x}$

Solution: Since the numerator tends toward 5 and the denominator tends toward 0, the limit does not exist. This is an infinite discontinuity

(c) $y=\frac{1}{e^{\frac{1}{x^{2}}}}$

Solution: Since $\lim _{x \rightarrow 0} e^{\frac{1}{x^{2}}}=\infty$ it follows that $y \rightarrow 0$ as $x \rightarrow 0$. Hence the discontinuity is removable.

(d) $y=\frac{(x-2015)^{5}}{x}$

Since $\lim _{x \rightarrow 0+} \frac{(x-2015)^{5}}{x}=\infty$ the discontinuity is infinite.

Extra Credit:

(University of Michigan Calculus problem (first exam, 7 Oct 2014)

Consider the function h defined by

$$
h(x)= \begin{cases}\frac{60\left(x^{2}-x\right)}{\left(x^{2}+1\right)(3-x)} & \text { for } x<2 \\ c & \text { for } x=2 \\ 5 e^{a x}-1 & \text { for } x>2\end{cases}
$$

where a and c are constants.
Find values of a and c so that both of the following conditions hold.

- $\lim _{x \rightarrow 2} h(x)$ exists.
- $h(x)$ is not continuous at $x=2$.

Note that this problem may have more than one correct answer. You only need to find one value of a and one value of c so that both conditions above hold. Remember to show your work clearly.

Solution: In order for $\lim _{x \rightarrow 2} h(x)$ to exist, it must be true that $\lim _{x \rightarrow 2^{-}} h(x)=\lim _{x \rightarrow 2^{+}} h(x)$. Now $\lim _{x \rightarrow 2^{-}} h(x)=\frac{60\left(2^{2}-2\right)}{\left(2^{2}+1\right)(3-2)}=24$ and $\lim _{x \rightarrow 2^{+}} h(x)=5 e^{2 a}-1$. So it follows that $5 e^{2 a}-1=24$. Solving for a, we have

$$
\begin{aligned}
5 e^{2 a}-1 & =24 \\
e^{2 a} & =5 \\
2 a & =\ln (5) \\
a & =\ln (5) / 2 \approx 0.804 .
\end{aligned}
$$

When $a=\ln (5) / 2, \lim _{x \rightarrow 2} h(x)=5 e^{(\ln (5) / 2) * 2}=5 e^{\ln (5)}-1=24$. So, h is not continuous at $x=2$ as long as $\lim _{x \rightarrow 2} h(x) \neq h(2)$. Since $h(2)=c$, we can choose c to be any number other than 24 .

