
MATH 161                Solutions:  QUIZ I          
 

 

1.   [10 pts] The graph of a rational function is shown below.   

 

Assume that 

 

Zeros:   x = 0, x = 3 

Singularities:    x = -2, x = -4 

Limiting behavior:  y → 3 as |x| → ∞ 

 

 

 
 

Find an equation of a rational function that incorporates all of this information.  

(Note that this problem may have more than one correct answer.) 

 

Solution:   
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Given the information about the zeros, we find that x and x + 3 must be factors of 

the numerator.   Given the information about the singularities, x + 2 and x + 4 

must be factors of the denominator. 

Since the zero at x = 0 does not create a sign change, we find that x2 or any even 

power of x, must a factor of the numerator.   Since the singularity at x = -4 also 

results in no sign change, we find that (x + 4)2 or any even power of x + 4, must 

be a factor of the denominator. 

So our first guess is: 
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Noting that the value of y as x → ∞ is 1, we have only to make one change: 
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2. [5 pts each]  Compute each of the following limits.  (Explain your reasoning. 

You may use estimation techniques, tables, graphing calculators, etc.) 
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Solution:  Observe that: 
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Solution:   
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Solution:   

 

Observe that, as long as x ≠ 5: 
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Solution:  We begin by rationalizing the numerator of the algebraic expression, 
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3. [10 pts] Does there exist a continuous extension to the curve   
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at x = 1?   If so, find it;  if not explain!   (Hint:  Factor first.) 

 

Solution:  Let’s begin by factoring, noting that the denominator is a difference of 

two squares. 
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Now, as x →1, we can cancel the x – 1 factor occurring both in the numerator and 

the denominator. So, for x ≠ 1 
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Now, as x →1, g(x) → 2/4 = ½ . 
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Thus x = 1 is a removable discontinuity, and we should assign the value of ½ to 

g(1). 

  

 

 

4.  [3 pts each]  Identify the type of discontinuity that each of the following functions 

has at x = 0.  (Choose from: removable, infinite, jump, or essential discontinuity.)  

You need not justify your answers. 
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Solution:  Since the limit of y as x→0 from the right is ¼, but the limit of y as x→0 

from the left is -¼, the discontinuity at x = 0 is a jump discontinuity. 
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Solution:  Since the numerator tends toward 5 and the denominator tends toward 

0, the limit does not exist. This is an infinite discontinuity 
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Solution:  Since 
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e  it follows that y → 0 as x → 0.  Hence the 

discontinuity is removable. 
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Extra Credit: 

 
(University of Michigan Calculus problem (first exam, 7 Oct 2014) 
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O dear Ophelia! 

I am ill at these numbers: 

I have not art to reckon my groans. 

 

- HAMLET (Act II, Sc. 2) 

 


