## MATH 161



The more you know, the less sure you are.

- Voltaire

1. [University of Michigan] For each of the following three sets of axes, exactly one of the following statements (A)-(E) is true. You may use a letter more than once. In the space provided next to each figure, enter the letter of the true statement for that figure. For each graph, note that the $x$ and $y$ scales are not the same.
(A) $h$ is the derivative of $f$, and $f$ is the derivative of $g$.
(B) $g$ is the derivative of $f$, and $f$ is the derivative of $h$.
(C) $g$ is the derivative of $h$, and $h$ is the derivative of $f$.
(D) $h$ is the derivative of $g$, and $g$ is the derivative of $f$.
(E) none of (A) through (D) are possible
(G1)

'ANSWER: $\qquad$
$\qquad$
(G2)


ANSWER: $\qquad$
(G3)


ANSWER: _D
2. Consider the rational function $f(x)=\frac{x(3 x+1)^{2}(2 x+3)^{4}}{(x-5)^{7}}$
(a) Find the domain of $f$.

Solution: $f(x)$ is defined for all real numbers except 5
(b) Find the y-intercept of $f$.

Solution: The y-intercept of f is $f(0)=0$.
(c) Find the zeroes of $f$.

Solution: $f(x)=0$ when $x=0,-1 / 3,-3 / 2$
(d) Find the vertical asymptote(s) of $f$.

Solution: A unique singularity occurs at $\mathrm{x}=5$; hence the only vertical asymptote is the line $\mathrm{x}=5$.
(e) Find the horizontal asymptote(s) of $f$.

Solution: For large $|\mathrm{x}|$,

$$
f(x)=\frac{x(3 x+1)^{2}(2 x+3)^{4}}{(x-5)^{7}} \approx \frac{x(3 x)^{2}(2 x)^{4}}{(x)^{7}}=\frac{x\left(9 x^{2}\right)(16 x)^{4}}{x^{7}}=144
$$

Thus the only horizontal asymptote is the line: $y=144$
3. Albertine orders a large cup of coffee at Metropolis on Granville. Let $\mathrm{F}(\mathrm{t})$ be the temperature in degrees Fahrenheit of her coffee $t$ minutes after the coffee is placed on her tray.
(a) Explain the meaning of the statement: $\mathrm{F}(9)=167$. (Use complete sentences. Avoid any mathematical terms!)

Solution: Nine minutes after being served her coffee, Albertine finds that the coffee is $167^{\circ} \mathrm{F}$.
(b) Explain the meaning of the statement: $\quad \mathrm{F}^{-1}(99)=17.5$

Solution: When the temperature of the coffee is $99^{\circ} \mathrm{F}, 17.5$ minutes have elapsed since the coffee mug was placed on her tray.
(c) Give the practical interpretation of the statement: $\mathrm{F}^{\prime}(9)=-1.10$. (Use complete sentences. Do not use the words "derivative" or "rate" or any other mathematical term in your explanation.)

Solution: Nine minutes after being served her coffee, Albertine notices that the temperature of the coffee is decreasing by about $0.11^{\circ} \mathrm{F}$ every tenth of a minute during the next minute or two.
(d) What are the units of $\mathrm{F}^{\prime}(9)$ ?

Solution: ${ }^{\circ}$ F/minute (since $\Delta F / \Delta$ t represents change in temp/ change in time.)
(e) Using the information given in parts (a) and (c), estimate the temperature of Albertine's coffee seven minutes after she has been handed the coffee.

Solution: Since after nine minutes the temperature is $167^{\circ} \mathrm{F}$, we would estimate that two minutes earlier the temperature was $167+2(1.1)=169.2{ }^{\circ} \boldsymbol{F}$.

## (e) EXTRA CREDIT

Explain the meaning of the statement:

$$
\left(F^{-1}\right)^{\prime}(99)=-1
$$

Solution: When the temperature of the coffee is $99^{\circ} \mathrm{F}$, the time required for the temperature of the coffee to fall to $98^{\circ} \mathrm{F}$ is one additional minute.
4. The following function is not continuous at the points $x=5 / 2$ and $x=4 / 3$.

$$
g(x)=\frac{2 x^{5}-19 x^{4}+35 x^{3}}{6 x^{2}-23 x+20}
$$

(a) [6 pts] Does $g$ possess a continuous extension at $\mathrm{x}=5 / 2$ ? If so, how should $g(5 / 2)$ be defined? If not, explain!

## Solution:

We begin by factoring:

$$
g(x)=\frac{2 x^{5}-19 x^{4}+35 x^{3}}{6 x^{2}-23 x+20}=\frac{x^{3}(2 x-5)(x-7)}{(3 x-4)(2 x-5)}
$$

If $x \neq 5 / 2$, then cancellation yields:

$$
g(x)=\frac{x^{3}(x-7)}{3 x-4}
$$

So we see that $x=5 / 2$ is a removable discontinuity.
To create a continuous extension to $g$ at $x=5 / 2$, we define $g(5 / 2)$ as follow:

$$
g(5 / 2)=\frac{(5 / 2)^{3}(5 / 2-7)}{3(5 / 2)-4}=-\frac{1125}{56} \cong-20.09
$$

(b) [6 pts] Does $g$ possess a continuous extension at $\mathrm{x}=4 / 3$ ? If so, how should $g(4 / 3)$ be defined? If not, explain!

## Solution:

We begin by noting that, when $x \neq 5 / 2$,

$$
g(x)=\frac{x^{3}(x-7)}{3 x-4}
$$

Now, as $x \rightarrow 4 / 3$, the numerator tends toward $(4 / 3)^{3}(4 / 3-7) \cong-13.43$, but the denominator tends toward 0. Consequently, the limit of $g(x)$ as $x \rightarrow 4 / 3$ does not exist. (This is an infinite discontinuity.)
5. [University of Michigan] Suppose $f(x)=\left(x+\frac{1}{2}\right) e^{x}$
a. Using the limit definition of the derivative, write an explicit expression for $f^{\prime}(2)$. Your expression should not contain the letter " $f$ ". Do not try to evaluate your expression.

$$
\text { Solution: } f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{\left(2+h+\frac{1}{2}\right) e^{2+h}-\left(2+\frac{1}{2}\right) e^{2}}{h}
$$

b. Albertine discovers that the derivative of $f(x)$ is $f^{\prime}(x)=\left(x+\frac{3}{2}\right) e^{x}$. Using this formula for $f^{\prime}(x)$, write an equation for the tangent line to the graph of $f(x)$ at $x=2$.

Solution: The slope is $m=\left(2+\frac{3}{2}\right) e^{2}=\frac{7}{2} e^{2}$ and the $y$-coordinate when $x=2$ is $f(2)=\left(2+\frac{1}{2}\right) e^{2}=\frac{5}{2} e^{2}$. Using the point-slope form for the tangent line, we obtain:

$$
y-\frac{5 e^{2}}{2}=\frac{7}{2} e^{2}(x-2)
$$

c. [3 points] Write an equation for the tangent line to the graph of $f(x)$ at $x=a$ where $a$ is an unknown constant.

Solution: Employing virtually the same computation that we did in (b), we find:

$$
y-\left(a+\frac{1}{2}\right) e^{a}=\left(a+\frac{3}{2}\right) e^{a}(x-a)
$$

d. EXTRA CREDIT Using your answer from (c), find a value of $a$ so that the tangent line to the graph of $f(x)$ at $x=a$ passes through the origin.

Solution: The point (0,0) must satisfy the tangent line equation in (e). Hence

$$
0-\left(a+\frac{1}{2}\right) e^{a}=\left(a+\frac{3}{2}\right) e^{a}(0-a)
$$

Dividing each side by $e^{a}$ we obtain:

$$
-\left(a+\frac{1}{2}\right)=-a\left(a+\frac{3}{2}\right)
$$

So $-2 a-1=-2 a^{2}-3 a$
Simplifying: $\quad 2 a^{2}+a-1=0$
Factoring: $(2 a-1)(a+1)=0$
Hence $a=1 / 2$ or $a=-1$
6. Compute each of the following limits. Justify your reasoning.
(a) $\lim _{x \rightarrow 1} \frac{(x-2)^{5}}{x^{2015}+4 x-6}$

Solution: Using the laws of limits:

$$
\lim _{x \rightarrow 1} \frac{(x-2)^{5}}{x^{2015}+4 x-6}=\frac{\lim _{x \rightarrow 1}(x-2)^{5}}{\lim _{x \rightarrow 1}\left(x^{2015}+4 x-6\right)}=\frac{(-1)^{5}}{1+4-6}=\frac{-1}{-1}=1
$$

(b) $\lim _{x \rightarrow 2}\left(1+\frac{8}{x}+\frac{x}{2}-5 \sin (\pi x)+7 \cos (\pi x)\right)$

Solution: Using the laws of limits:

$$
\begin{aligned}
& \lim _{x \rightarrow 2}\left(1+\frac{8}{x}+\frac{x}{2}-5 \sin (\pi x)+7 \cos (\pi x)\right)= \\
& \lim _{x \rightarrow 2} 1+\lim _{x \rightarrow 2} \frac{8}{x}+\lim _{x \rightarrow 2} \frac{x}{2}-\lim _{x \rightarrow 2} 5 \sin (\pi x)+\lim _{x \rightarrow 2} 7 \cos (\pi x)= \\
& 1+\frac{8}{2}+\frac{2}{2}-5 \sin (2 \pi)+7 \cos (2 \pi)=1+4+1-5(0)+7(1)=13
\end{aligned}
$$

(c) $\lim _{x \rightarrow \infty} \frac{x^{4}(3 x-1)\left(5 x^{2}-19 x+1\right)^{2}}{(x-2)^{7}(4 x-13)(x+43)}$

Solution: For large values of $x$ :

$$
\frac{x^{4}(3 x-1)\left(5 x^{2}-19 x+1\right)^{2}}{(x-2)^{7}(4 x-13)(x+43)} \approx \frac{x^{4}(3 x)\left(5 x^{2}\right)^{2}}{(x)^{7}(4 x)(x)}=\frac{75 x^{9}}{4 x^{9}}=\frac{75}{4}
$$

(d) $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{\tan (9 x)}$

## Solution:

7. (a) [6 pts] Find an equation of the normal line to the curve

$$
y=g(x)=\frac{x^{2}-1}{x^{2}+1} \text { at } \mathrm{x}=1
$$

Solution:
$d y / d x=\frac{\left(x^{2}+1\right) d / d x\left(x^{2}-1\right)-\left(x^{2}-1\right) d / d x\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{2}}=$
$\frac{\left(x^{2}+1\right)(2 x)-\left(x^{2}-1\right)(2 x)}{\left(x^{2}+1\right)^{2}}$

Now, when $\mathrm{x}=1$, dy/dx $=\frac{\left(1^{2}+1\right)(2)-\left(1^{2}-1\right)(2)}{\left(1^{2}+1\right)^{2}}=1$
Hence the slope of the normail line is $m=-1$.
Also, note that $\mathrm{g}(1)=0$.

Using the point-slope form of the line: $y-0=-1(x-1)$
or $\mathbf{y}=\mathbf{1}-\mathbf{x}$
(b) [6 pts] Find an equation of the tangent line to the curve $\mathrm{y}=\mathrm{F}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}\left(\mathrm{x}^{2}+4 \mathrm{x}+1\right)$ at $\mathrm{x}=0$.

Solution:
$d y / d x=e^{x} d / d x\left(x^{2}+4 x+1\right)+\left(x^{2}+4 x+1\right) d / d x\left(e^{x}\right)=$ $e^{x}(2 x+4)+\left(x^{2}+4 x+1\right) e^{x}$

At $x=0, d y / d x=e^{0}(4)+(1) e^{0}=5$.
Also note that $\mathrm{f}(0)=\mathrm{e}^{0}=1$.
So the equation of the tangent line at the point $(0,1)$ is given by:

$$
\begin{aligned}
& y-1=5(x-0) \\
& \text { or } y=5 x+1
\end{aligned}
$$

8. Identify the type of discontinuity that each of the following functions has at $\mathrm{x}=0$. (Choose from: removable, infinite, jump, or essential discontinuity.) You need not justify your answers.
(a) $y=\frac{x^{5}-x^{4}+x^{3}-x^{2}+x}{x^{2}+x}$
removable discontinuity at $x=0$

(b) $y=\cos \left(\frac{\sin x}{x}\right)$
removable discontinuity at $x=0$

(c) $y=\sinh \left(\frac{1}{x}\right)$
infinite discontinuity at $x=0$

(d) $y=e^{-1 / x^{2}}$
removable discontinuity at $x=0$

9. (a) Let $\mathrm{G}(\mathrm{x})=\mathrm{a}^{\mathrm{bx}}$, where $a$ and $b$ are non-zero constants. Albertine, our friend, informs us that $(d / d x) e^{b x}=b e^{b x}$. Find $\mathrm{G}^{(2015)}(\mathrm{x})$.

## Solution:

$$
\begin{aligned}
& G^{\prime}(x)=a b e^{b x} \\
& G^{\prime}(x)=(d / d x) G^{\prime}(x)=(d / d x)\left(a b e^{b x}\right)=a b^{2} e^{b x} \\
& G^{\prime \prime \prime}(x)=(d / d x) G^{\prime}(x)=(d / d x)\left(a b^{2} e^{b x}\right)=a b^{3} e^{b x} \\
& G^{(4)}(x)=a b^{4} e^{b x} \\
& G^{(5)}(x)=a b^{5} e^{b x}
\end{aligned}
$$

Based upon this pattern, we infer that $G^{(n)}(x)=a b^{n} e^{b x}$
Thus $G^{(2015)}(2015)=\boldsymbol{a} \boldsymbol{b}^{2015} \boldsymbol{e}^{2015 b}$
(b) [University of Michigan] Your pet parakeet, Odette, is flying in a straight path that at first is toward you and then away from you for a minute. After $t$ seconds, she is $f(t)$ feet away from you, where

$$
f(t)=\frac{-t(t-20)(t-70)}{500}+20, \quad 0 \leq t \leq 60 .
$$

A graph of $y=f(t)$ is shown below.


Without doing any calculations, determine which is greater: the average velocity of Odette over the entire minute, or her instantaneous velocity at 30 seconds. Explain, referring to the graph. (The absence of a clear explanation will result in no credit.)

## Solution:

The slope of the secant line from $t=0$ to $t=60$ is the average velocity over the minute and the slope of the tangent line at $t=30$ is the instantaneous velocity after 30 seconds. If you draw these lines on the graph, you can see that the tangent line clearly has a larger slope. Thus, Odette's instantaneous velocity after 30 seconds is greater than her average velocity over the entire minute.
10. (a) State carefully the Intermediate Value Theorem for a function $\mathrm{y}=\mathrm{G}(\mathrm{x})$.

Provide a sketch that illustrates the statement.
Let $y=f(x)$ be a continuous function on the interval $[a, b]$. Let $u$ be any number between $f(a)$ and $f(b)$. Then there exists a number $c$ in the interval $[a, b]$ such that $f(c)=u$.

(b) Let $\mathrm{G}(\mathrm{x})=\mathrm{x}^{5}-5-\ln \mathrm{x}$. Using the Intermediate Value Theorem, carefully explain why the equation $\mathrm{G}(\mathrm{x})=0$ has at least one solution. (Your calculator is not needed here.)

## Solution:

Note that $G(1)=1-5-\ln 1=-4<0$ and $G(e)=\mathrm{e}^{5}-5-\ln \mathrm{e}=$ $\mathrm{e}^{5}-6>2^{5}-6=28>0$.

Also note that $G$ is continuous on the interval $[0, \pi]$. Since $G(0)<0<G(e)$, the IVT guarantees the existence of a root of the equation $G(x)=0$ in the interval [0, e].
11. Suppose that $f$ and $g$ are differentiable functions satisfying:

$$
f(3)=-2, g(3)=-4, f^{\prime}(3)=3, \text { and } g^{\prime}(3)=-1
$$

(a) Let $\mathrm{H}(\mathrm{x})=(\mathrm{f}(\mathrm{x})+2 \mathrm{~g}(\mathrm{x})+1)(\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})-4)$. Compute $\mathrm{H}^{\prime}(3)$

Solution: Using the product rule:
$H^{\prime}(x)=(f(x)+2 g(x)+1) d / d x(f(x)-g(x)-4)+(f(x)-g(x)-4) d / d x(f(x)+2 g(x)+1)$
$=(f(x)+2 g(x)+1)\left(f^{\prime}(x)-g^{\prime}(x)\right)+(f(x)-g(x)-4)\left(f^{\prime}(x)+2 g^{\prime}(x)\right)$
Thus $H^{\prime}(3)=(f(3)+2 g(3)+1)\left(f^{\prime}(3)-g^{\prime}(3)\right)+(f(3)-g(3)-4)\left(f^{\prime}(3)+2 g^{\prime}(3)\right)$
$=(-2-8+1)(3-(-1))+(-2-(-4)-4)(3+2(-1))=(-9)(4)+(-2)(1)=-38$
(b) Let $M(x)=\frac{2 f(x)+3 g(x)}{2-3 g(x)}$. Compute $\mathrm{M}^{\prime}(3)$

Solution: Using the quotient rule:

$$
\begin{aligned}
& M(x)=\frac{(2-3 g(x)) d / d x(2 f(x)+3 g(x))-(2 f(x)+3 g(x)) d / d x(2-3 g(x))}{(2-3 g(x))^{2}}= \\
& \frac{(2-3 g(x))\left(2 f^{\prime}(x)+3 g^{\prime}(x)\right)-(2 f(x)+3 g(x))\left(-3 g^{\prime}(x)\right)}{(2-3 g(x))^{2}} \\
& \text { At } x=3, M^{\prime}(3)= \\
& \frac{(2-3(-4)))(2(3)+3(-1))-(2(-2)+3(-4))(-3(-1))}{(2-3(-4))^{2}}=\frac{45}{98}
\end{aligned}
$$

12. [University of Michigan] The graph of a function $h(x)$ is given below.

a. [2 point] List all $x$-values with $-4<x<4$ where $h(x)$ is not continuous. If there are none, write NONE.

Solution: $h(x)$ is not continuous at $x=1$. Notice it is a jump discontinuity.
b. [2 point] List all $x$-values with $-4<x<4$ where $h(x)$ is not differentiable. If there are none, write NONE.

Solution: $h(x)$ is not differentiable at two points: $x=1$ and $x=3$.
c. On the axes provided, carefully draw a graph of $y=h^{\prime}(x)$. Be sure to label important points or features on your graph.


