WORKSHEET XII

CURVE SKETCHING

M. C. Escher: Concave and Convex

1. Sketch each of the following curves, $y=f(x)$. Follow the three-stage plan:
(1) precalculus analysis, (2) first-derivative analysis (finding all critical points and identifying local \& global extrema), and (3) second-derivative analysis.
(a) $y=2 x^{3}-14 x^{2}+22 x-13$
(b) $y=x^{4}-4 x^{3}+10$
(c) $y=x e^{x}$
(d) $y=x^{4}(x-5)$
(e) $y=x^{2} \ln x$
(f) $y=x e^{-2 x}$
(g) $y=(x-1)^{4}(x-2)^{9}$
(h) $y=\frac{(x+1)^{2}}{1+x^{2}}$
(i) $y=\frac{(x-1)^{2}}{(x+3)^{2}}$
(j) $y=e^{-(x-3)^{2}}$
(k) $y=\frac{(x-1)^{2}}{(x+3)^{2}}$
(l) $y=x^{3}(2 x-5)^{8}$
(m) $y=x+\sin x$
(n) $y=x+2 \cos x$
(0) $y=e^{2 / x}$
(p) $y=\left(x^{2}+4\right) /(2 x)$
2. Determine all local and global extrema of the following functions, each defined on a closed and bounded interval.
(a) $y=x+4 / x$ on $[1,3]$
(b) $y=\sqrt{5-x^{2}}$ on $[-1,1]$
(c) $y=x^{10}-10 x$ on $[-1,2]$
(d) $y=x^{3}+6 x^{2}+1$ on $[-1,1]$
(e) $y=x^{3}+x^{5}+x^{7}$ on $[-1,1]$
(f) $y=x \sin x$ on $\left[0, \frac{\pi}{3}\right]$
(g) $y=x^{2}+\frac{16}{x^{2}}$ on $[-2,-1]$
(h) $y=\frac{x}{x^{4}+48}$ on $[-10,10]$
3. For each graph of $y=g^{\prime}(x)$ given below, draw the graphs of $y=g(x)$ and that of $\mathrm{y}=\mathrm{g}^{\prime \prime}(\mathrm{x})$.
(a)

(b)

(c)

(d)

4. Given that the derivative of a smooth function $y=f(x)$ is

$$
y^{\prime}=(x-1)^{2}(x-2)(x-4)
$$

Determine all points (if any) at which y has a local minimum, local maximum, or point of inflection.
5. Given that the second derivative of a smooth function
$y=f(x)$ is

$$
y^{\prime \prime}=x(x-3)^{2}(x-2)^{3}(x-4)(x-9)^{2014}
$$

find any and all points of inflection.
6. What is meant by the First Derivative Test for finding local extrema?

What is the Second Derivative Test for finding local extrema?
7. Use the Second Derivative Test to find local extrema of each of the following curves:
(a) $y=x^{4}-4 x^{3}$
(b) $y=x^{4} / 4-2 x^{3}+6$
(c) $y=3 x^{5}-5 x^{3}+3$

Everyone knows what a curve is, until he has studied enough mathematics to become confused through the countless number of possible exceptions.

- Felix Klein

