## WORKSHEET II

More about Functions: graphing rational functions; introduction to hyperbolic functions


1. Sketch the graph of each of the following rational functions. This includes locating zeroes, locating singularities, doing a sign analysis, and studying limiting behavior.
(A) $y=x^{3}(x-1)^{4}(x-2)^{5}$
(B) $y=\frac{x^{2}}{(x-3)(x-5)}$
(C) $y=\frac{x^{2}(x+3)}{x-7}$
(D) $y=\frac{x(x-2)(x+3)}{(x+1)(x-1)(x-5)}$
2. Suppose that $\mathrm{f}(\mathrm{x}) \rightarrow \infty$ and $\mathrm{g}(\mathrm{x}) \rightarrow \infty$ as $\mathrm{x} \rightarrow \infty$. We say that g goes to
infinity faster thanf if $\frac{f(x)}{g(x)} \rightarrow 0$ as $\mathrm{x} \rightarrow \infty$. Also, we say that "f and $g$
go to infinity at roughly the same rate" if $\frac{f(x)}{g(x)} \rightarrow L$
as $x \rightarrow \infty$ where $0<L<\infty$.

For each of the following pairs of functions determine if one goes to infinity faster than the other or if they go to infinity at roughly the same rate.
(A) $\mathrm{y}=3 \mathrm{x}^{2}+11, \mathrm{y}=\mathrm{x}^{5}+\mathrm{x}+99$
(B) $y=2^{x}, y=x^{100}$
(C) $\mathrm{y}=3^{\mathrm{x}}, \mathrm{y}=\mathrm{e}^{\mathrm{x}}$
(D) $\mathrm{y}=\ln \mathrm{x}, \mathrm{y}=\mathrm{x}$
(E) $y=\sqrt{x}, \quad y=\sqrt[3]{x}$
(F) $y=\ln \mathrm{x}, \quad y=\sqrt{x}$
(G) $y=\left(x^{2}+1\right)^{4}, y=(2 x+1)^{3} x^{5}$
(H) $y=4 x, y=\sqrt{x^{2}+9}$
(I) $y=\ln x, \quad y=\cos x+\ln x$
(J) $y=\ln x, y=\ln (\ln x)$
3. Define the hyperbolic functions $\sinh \mathrm{x}, \cosh \mathrm{x}, \tanh \mathrm{x}$ and $\operatorname{sech} \mathrm{x}$. Sketch each of these functions.
(A) Prove the identity: $\cosh ^{2} \mathrm{x}-\sinh ^{2} \mathrm{x}=1$
(B) Prove the identity: $1-\tanh ^{2} \mathrm{x}=\operatorname{sech}^{2} \mathrm{x}$

"...he seemed to approach the grave as a hyperbolic curve approaches a line, less directly as he got nearer, till it was doubtful if he would ever reach it at all."

- Thomas Hardy, Far from the Madding Crowd


## COURSE HOME PAGE DEPARTMENT HOME PAGE LOYOLA HOME PAGE

