WORKSHEET III

limits \& continuity

Fractal tree

I Evaluate each of the following limits or explain why the limit fails to exist.

1. $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-5 x+6}$
2. $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x-3}$
3. $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{2}-1}$
4. $\lim _{x \rightarrow 1} \frac{x+9}{x^{2}-4}$
5. $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x^{3}-1}$
6. $\lim _{x \rightarrow 0} \frac{|x|}{x}$
7. $\lim _{x \rightarrow 16} \frac{\sqrt{x}-4}{x-16}$
8. $\lim _{x \rightarrow 1} \frac{\frac{1}{x}-1}{x-1}$
9. $\lim _{x \rightarrow 4} \sqrt{\frac{x+5}{x+12}}$
10. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{(x-1)^{3}}$

II State the limit laws.

III State the Sandwich Theorem (a.k.a. Squeeze Theorem, Pinching Theorem, Two Gendarmes Theorem, Two Policemen and a Drunk Theorem).

IV (A) Is the function $\mathrm{f}(\mathrm{x})=(\sin \mathrm{x}) / \mathrm{x}$ even or odd or neither?
(B) Using the Sandwich Theorem prove that

$$
(\sin x) / x \rightarrow 1 \text { as } x \rightarrow 0
$$

\mathbf{V} Define continuity of a function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=\mathrm{a}$. What does it mean for a function to be continuous?

VI Consider each of the following functions and the given point on the x -axis. Does the function have a continuous extension at the given point? Explain.

1. $f(x)=\frac{x-2}{x-3}, x=3$
2. $G(x)=\frac{x^{2}-9}{x-3}, x=3$
3. $H(x)=\frac{2 x^{2}-13 x+20}{3 x^{2}-13 x+4}, x=4$
4. $g(x)=\frac{2 x^{2}-13 x+20}{3 x^{2}-13 x+4}, x=1 / 3$

VII For which value of a is the following function continuous everywhere?

$$
f(x)= \begin{cases}x^{2}-1 & \text { for } x<3 \\ 2 a x & \text { for } x \geq 3\end{cases}
$$

VIII For which values of a and b is the following function continuous everywhere?

$$
g(x)=\left\{\begin{array}{l}
a x+2 b \text { for } x \leq 0 \\
x^{2}+3 a-b \text { for } 0<x \leq 2 \\
3 x-5 \text { for } x>2
\end{array}\right.
$$

IX State the Intermediate Value Theorem. Using the IVT, prove that the polynomial $f(x)=x^{4}+4 x^{3}-20 x+11$ must have a root between $x=0$ and $\mathrm{x}=1$.

X Give examples of each of the following types of discontinuities:
removable, jump, infinite, and essential.
For each of the following functions, determine the type of discontinuity at the given point.
(a) $\mathrm{y}=(\sin \mathrm{x}) / \mathrm{x}$ at $\mathrm{x}=0$
(b) $\mathrm{y}=\left(\mathrm{x}^{3}-8\right) /(\mathrm{x}-2)$ at $\mathrm{x}=2$
(c) $\mathrm{y}=\sin (1 / \mathrm{x})$ at $\mathrm{x}=0$
(d) $\mathrm{y}=|\mathrm{x}-3| /(\mathrm{x}-3)$ at $\mathrm{x}=3$.
(e) $\mathrm{y}=\mathrm{x} \sin (1 / \mathrm{x})$ at $\mathrm{x}=0$
(f) $y=(\cos x) / x$ at $x=0$
(g) $\mathrm{y}=\left(\mathrm{x}^{7}-1\right) /(\mathrm{x}-1)$ at $\mathrm{x}=1$
(h) $y=(\cosh x) / x$ at $x=0$
(i) $\mathrm{y}=(1-\cos \mathrm{x}) / \mathrm{x}$ at $\mathrm{x}=0$.

