WORKSHEET VIIII

HIGHER-ORDER DERIVATIVES

FUIL OF GOFHE

1. Find the first three derivatives of each of the following functions.
(A) $y=a x^{2}+b x+c$
(B) $y=2 x^{3}+\frac{1}{x^{2}}+e^{x}$
(C) $y=x e^{x}$
(D) $y=\sin x$
(E) $y=x \sin x$
(F) $y=x^{2} \ln x$
2. (A) If $(d / d x) e^{4 x}=4 e^{4 x}$, find $\left(d^{199} / d x^{199}\right) e^{4 x}$.
(B) If $(d / d x) \sin 5 x=5 \cos 5 x$, and $(d / d x) \cos 5 x=-5 \sin 5 x$, find ($\left.\mathrm{d}^{2015} / \mathrm{dx}^{2015}\right) \sin 5 \mathrm{x}$.
3. If $f(x)=x^{1 / 2}$, find $f^{(4)}(x)$.

4. If $x(t)=3 t^{3}-4 t+1$ is the position (measured in meters) of Charlotte on the x -axis at time t (measured in hours), find Charlotte's velocity and acceleration at time $\mathrm{t}=2 \mathrm{hrs}$.
5. If $F(x)=x^{m}$, find $\mathrm{F}^{(\mathrm{m})}(\mathrm{x})$. (Assume that m is a positive integer.)
6. Let $\mathrm{y}=\ln \mathrm{x}$. Given that $\mathrm{dy} / \mathrm{dx}=1 / \mathrm{x}$, find $\mathrm{d}^{4} \mathrm{y} / \mathrm{dx}^{4}$. Can you find $\mathrm{d}^{10} \mathrm{y} / \mathrm{dx}^{10}$?
7. (University of Michigan) Consider the following table giving values, rounded to three decimal places, of a function $f(x)$.

$$
\begin{array}{c|ccc}
x & 0 & 0.5 & 1 \\
\hline f(x) & 0 & 0.247 & 0.841
\end{array}
$$

a. Estimate $f(1)$. Be sure it is clear how you obtain your answer.
b. Estimate $f^{\prime}(1)$. Again, be sure that it is clear how you obtain your answer.
c. Estimate $f(1.25)$, being sure your work is clear.
d. Based on your work in (a) and (b), is your estimate in (c) an over- or underestimate? Explain.
8. (University of Michigan) A paperback book (definitely not a valuable calculus textbook, of course) is dropped from the top of Mertz hall (which is 40 m high) towards a very large, upward pointing fan. The average velocity of the book between time $t=0$ and later times is shown in the table of data below (in which t is in seconds and the velocities are in m / s).

between $t=0$ seconds and $t=$	1	2	3	4	5
average velocity is	-5	-10	-11.67	-9	-7.2

a. Fill in the following table of values for the height $h(t)$ of the book (measured in meters). Show how you obtain your values.

| t | 0 | 1 | 2 | 3 | 4 | 5 | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $h(t)$ | 40 | - | | | | | |

b. Based on your work from (a), is $h^{\prime \prime}(1)>0,<0$, or $=0$? Is $h^{\prime \prime}(3)>0,<0$, or $=$ 0? Explain.
9. For each of the descriptions of a function f that follow, indicate which of the graphs below match the description. For each description there may be no, one, or several graphs that match; write none if no graphs match the description. You may need to use a graph more than once. In each case you should assume that f is defined only on the domain $[0,2]$.

- $f^{\prime}(x)<0$ for $x<1$ and $f^{\prime}(x)>0$ for $x>1 ; f(x)<0$ for $x<1$ and $f(x)>0$ for $x>1$; and $f(x)$ is continuous everywhere except at $x=1$.
matching graph(s):
- $f^{\prime}(x)>0$ for all $x=16 ; f(x)<0$ for all $x=16$; and $f(x)$ is differentiable everywhere except at $x=1$. matching graph(s):
- $f^{\prime}(x)<0$ for all $x=16 ; f(x)<0$ for $x<1$ and $f(x)>0$ for $x>1$; and $f(x)<0$ for all $x=1.6$
matching graph(s):
- $f^{\prime}(x)<0$ for $x<1$ and $f^{\prime}(x)>0$ for $x>1 ; f(x)<0$ for $x<1$ and $f(x)>0$ for $x>1$; and $f(x)$ is differentiable everywhere except at $x=1$.
matching graph(s):

