MATH 161 SOLUTIONS: QUIZ X 1 DECEMBER 2017

1. Albertine is studying Newton's method. She is trying to find the roots of a cubic polynomial

$$p(x) = x^3 - x + 1 = 0$$

- (a) [3 pts] Albertine has determined that there must be a root between x = -2 and x = -1. How can she be so certain?
- Solution: First observe that p(x) is continuous, since it is a polynomial. Then note that p(0) = 1 > 0 and p(-2) = -5 < 0. Hence, by the Intermediate Value Theorem, p(x) must have a root in the interval (0, -2).
 - (b) [7 *pts*] Albertine's initial guess is $x_0 = -1$. Using Newton's method, find x_1 and x_2 . Express each answer to 3 significant digits.

Solution: Letting $x_0 = -1$ *, we find that* $y_0 = f(x_0) = f(-1) = 1$ *.*

Also $p'(x) = 3x^2 - 1 \Rightarrow p'(x_0) = p'(-1) = 2.$

So the equation of the tangent line to y = p(x) at $x = x_0$ is

$$y - 1 = 2(x - (-1))$$

Letting y = 0, we find: $x_1 = -\frac{1}{2} - 1 = -\frac{3}{2}$.

Repeating this process to find x_2 ;

$$y_1 = p\left(-\frac{3}{2}\right) = -0.875$$

 $m_1 = p'\left(-\frac{3}{2}\right) = 5.75$

So the equation of the tangent line to y = p(x) at $x = x_1$ is

$$y - (-0.875) = 5.75 \left(x - \left(-\frac{3}{2} \right) \right).$$

Letting $y = 0$, we find: $x_2 = \frac{0.875}{5.75} - \frac{3}{2} = -1.3478260869565217 \approx -1.35$

2. [Stewart problem, 10 pts] Find $\lim_{x\to\infty} (e^x + x)^{1/x}$

Solution: Let $y = (e^x + x)^{\frac{1}{x}}$.

The limit as $x \to \infty$ is an indertminate form: ∞^0 . To use L'Hôpital's rule, we convert this to an indeterminate form of type $\frac{\infty}{\infty}$. Now, $\ln y = \ln(e^x + x)^{1/x} = \frac{1}{x}\ln(e^x + x) = \frac{\ln(e^x + x)}{x}$ is of the form $\frac{\infty}{\infty}$. Invoking L'Hôpital's rule, $\lim_{x\to\infty} \frac{\ln(e^x + x)}{x} = \lim_{x\to\infty} \frac{\frac{d}{dx}\ln(e^x + x)}{\frac{d}{dx}x} =$ $\lim_{x\to\infty} \frac{\frac{1}{(e^x + x)}(e^x + 1)}{1} = \lim_{x\to\infty} \frac{e^x + 1}{e^x + x}$

Now, since this new limit is of the form $\frac{\infty}{\infty}$, we may invoke L'Hôpital's rule once again, viz.

$$\lim_{x \to \infty} \frac{e^{x} + 1}{e^{x} + x} = \lim_{x \to \infty} \frac{\frac{d}{dx}(e^{x} + 1)}{\frac{d}{dx}(e^{x} + x)} = \lim_{x \to \infty} \frac{e^{x}}{e^{x} + 1} = 1$$

Now since $\ln y \to 1$ as $x \to \infty$, $y = e^{\ln y} \to e^1 v = e$ as $x \to \infty$.

3. [Stewart problem, 10 pts] Evaluate the indefinite integral

$$\int e^x \sqrt{1+e^x} \, dx$$

Solution: Let $u = 1 + e^x$. Then $du = e^x dx$. Thus

$$\int e^x \sqrt{1 + e^x} \, dx = \int \sqrt{u} \, du = \frac{2}{3} \, u^{\frac{3}{2}} + C = \frac{2}{3} \, (1 + e^x)^{\frac{3}{2}} + C$$

4. [*Stewart problem, 10 pts*] Evaluate the Riemann integral

$$\int_0^{\frac{1}{4}} \frac{\arcsin(2x)}{\sqrt{1-4x^2}} dx$$

Solution: Let $w = \arcsin(2x)$. Then $dw = \frac{2}{\sqrt{1-4x^2}} dx \Rightarrow \frac{dw}{2} = \frac{1}{\sqrt{1-4x^2}} dx$. Also, as x varies from 0 to $\frac{1}{4}$, w varies from 0 to $\frac{\pi}{6}$. Thus

$$\int_{x=0}^{x=\frac{1}{4}} \frac{\arcsin(2x)}{\sqrt{1-4x^2}} dx = \int_{w=0}^{w=\frac{\pi}{6}} \frac{\arcsin(2x)}{\sqrt{1-4x^2}} dx = \int_{u=0}^{u=\frac{\pi}{6}} \arcsin(2x) \frac{1}{\sqrt{1-4x^2}} dx =$$

$$\int_{u=0}^{u=\frac{\pi}{6}} w \frac{1}{\sqrt{1-4x^2}} dx = \int_{w=0}^{w=\frac{\pi}{6}} \frac{w}{2} dw = \frac{w^2}{4} \begin{bmatrix} w = \frac{\pi}{6} \\ w = 0 \end{bmatrix} = \frac{\pi^2}{144}$$

Extra Credit [Stewart problem, 10 pts:

$$\int x^3 \sqrt{1+x^2} \, dx$$

Solution:

Let $t = 1 + x^2$. Then $dt = 2x \, dx \Rightarrow x \, dx = \frac{dt}{2}$. Also, note that $x^2 = t - 1$. So

$$\int x^3 \sqrt{1+x^2} \, dx = \int x^2 \sqrt{1+x^2} \, (x \, dx) = \int (t-1)\sqrt{t} \, \frac{dt}{2} =$$

$$\int (t-1)\sqrt{t} \, \frac{dt}{2} = \frac{1}{2} \int (t^{\frac{3}{2}} - t^{\frac{1}{2}}) \, dt = \frac{1}{2} \left(\frac{2}{5} t^{\frac{5}{2}} - \frac{2}{3} t^{\frac{3}{2}} \right) + C =$$
$$\frac{1}{5} t^{\frac{5}{2}} - \frac{1}{3} t^{\frac{3}{2}} + C = \frac{1}{5} (1+x^2)^{\frac{5}{2}} - \frac{1}{3} (1+x^2)^{\frac{3}{2}} + C$$

But just as much as it is easy to find the differential [derivative] of a given quantity, so it is difficult to find the integral of a given differential. Moreover, sometimes we cannot say with certainty whether the integral of a given quantity can be found or not.

- Johann Bernoulli