MATH 161

1. Albertine is studying Newton's method. She is trying to find the roots of a cubic polynomial

$$
p(x)=x^{3}-x+1=0
$$

(a) [3 pts] Albertine has determined that there must be a root between $\mathrm{x}=-2$ and $x=-1$. How can she be so certain?

Solution: First observe that $p(x)$ is continuous, since it is a polynomial.
Then note that $p(0)=1>0$ and $p(-2)=-5<0$.
Hence, by the Intermediate Value Theorem, $p(x)$ must have a root in the interval (0, -2).
(b) [7 pts] Albertine's initial guess is $\mathrm{x}_{0}=-1$. Using Newton's method, find x_{1} and x_{2}. Express each answer to 3 significant digits.

Solution: Letting $\mathrm{x}_{0}=-1$, we find that $\mathrm{y}_{0}=\mathrm{f}\left(\mathrm{x}_{0}\right)=\mathrm{f}(-1)=1$.
Also $p^{\prime}(x)=3 x^{2}-1 \Rightarrow p^{\prime}\left(x_{0}\right)=p^{\prime}(-1)=2$.
So the equation of the tangent line to $y=p(x)$ at $x=x_{0}$ is

$$
y-1=2(x-(-1))
$$

Letting $y=0$, we find: $x_{1}=-\frac{1}{2}-1=-\frac{3}{2}$.
Repeating this process to find x_{2};

$$
\begin{gathered}
y_{1}=p\left(-\frac{3}{2}\right)=-0.875 \\
m_{1}=p^{\prime}\left(-\frac{3}{2}\right)=5.75
\end{gathered}
$$

So the equation of the tangent line to $y=p(x)$ at $x=x_{1}$ is

$$
y-(-0.875)=5.75\left(x-\left(-\frac{3}{2}\right)\right) .
$$

Letting $y=0$, we find: $\quad x_{2}=\frac{0.875}{5.75}-\frac{3}{2}=-1.3478260869565217 \approx-\mathbf{1 . 3 5}$

2. [Stewart problem, 10 pts] Find $\lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{1 / x}$

Solution: Let $y=\left(e^{x}+x\right)^{\frac{1}{x}}$.
The limit as $x \rightarrow \infty$ is an indertminate form: ∞^{0}.
To use L'Hôpital's rule, we convert this to an indeterminate form of type $\frac{\infty}{\infty}$.
Now, $\ln y=\ln \left(e^{x}+x\right)^{1 / x}=\frac{1}{x} \ln \left(e^{x}+x\right)=\frac{\ln \left(e^{x}+x\right)}{x}$ is of the form $\frac{\infty}{\infty}$.
Invoking L'Hôpital's rule, $\lim _{x \rightarrow \infty} \frac{\ln \left(e^{x}+x\right)}{x}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} \ln \left(e^{x}+x\right)}{\frac{d}{d x} x}=$
$\lim _{x \rightarrow \infty} \frac{\frac{1}{\left(e^{x}+x\right)}\left(e^{x}+1\right)}{1}=\lim _{x \rightarrow \infty} \frac{e^{x}+1}{e^{x}+x}$
Now, since this new limit is of the form $\frac{\infty}{\infty}$, we may invoke L'Hôpital's rule once again, viz.

$$
\lim _{x \rightarrow \infty} \frac{e^{x}+1}{e^{x}+x}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(e^{x}+1\right)}{\frac{d}{d x}\left(e^{x}+x\right)}=\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}+1}=1
$$

Now since $\ln y \rightarrow 1$ as $x \rightarrow \infty, y=e^{\ln y} \rightarrow e^{1} v=e$ as $x \rightarrow \infty$.
3. [Stewart problem, 10 pts] Evaluate the indefinite integral

$$
\int e^{x} \sqrt{1+e^{x}} d x
$$

Solution: Let $u=1+e^{x}$. Then $d u=e^{x} d x$. Thus

$$
\int e^{x} \sqrt{1+e^{x}} d x=\int \sqrt{u} d u=\frac{2}{3} u^{\frac{3}{2}}+C=\frac{2}{3}\left(1+e^{x}\right)^{\frac{3}{2}}+C
$$

4. [Stewart problem, 10 pts] Evaluate the Riemann integral

$$
\int_{0}^{\frac{1}{4}} \frac{\arcsin (2 x)}{\sqrt{1-4 x^{2}}} d x
$$

Solution: Let $w=\arcsin (2 x)$. Then $d w=\frac{2}{\sqrt{1-4 x^{2}}} d x \Rightarrow \frac{d w}{2}=\frac{1}{\sqrt{1-4 x^{2}}} d x$. Also, as x varies from 0 to $\frac{1}{4}$, w varies from 0 to $\frac{\pi}{6}$. Thus

$$
\begin{gathered}
\int_{x=0}^{x=\frac{1}{4}} \frac{\arcsin (2 x)}{\sqrt{1-4 x^{2}}} d x=\int_{w=0}^{w=\frac{\pi}{6}} \frac{\arcsin (2 x)}{\sqrt{1-4 x^{2}}} d x= \\
\int_{u=0}^{u=\frac{\pi}{6}} \arcsin (2 x) \frac{1}{\sqrt{1-4 x^{2}}} d x= \\
\int_{u=0}^{u=\frac{\pi}{6}} w \frac{1}{\sqrt{1-4 x^{2}}} d x=\int_{w=0}^{w=\frac{\pi}{6}} \frac{w}{2} d w=\frac{w^{2}}{4}\left[\begin{array}{l}
w=\frac{\pi}{6} \\
w=0
\end{array}=\frac{\boldsymbol{\pi}^{2}}{\mathbf{1 4 4}}\right.
\end{gathered}
$$

Extra Credit [Stewart problem, 10 pts:

$$
\int x^{3} \sqrt{1+x^{2}} d x
$$

Solution:

Let $t=1+x^{2}$. Then $d t=2 x d x \Rightarrow x d x=\frac{d t}{2}$.
Also, \quad note that $x^{2}=t-1$. So

$$
\int x^{3} \sqrt{1+x^{2}} d x=\int x^{2} \sqrt{1+x^{2}}(x d x)=\int(t-1) \sqrt{t} \frac{d t}{2}=
$$

$$
\begin{gathered}
\int(t-1) \sqrt{t} \frac{d t}{2}=\frac{1}{2} \int\left(t^{\frac{3}{2}}-t^{\frac{1}{2}}\right) d t=\frac{1}{2}\left(\frac{2}{5} t^{\frac{5}{2}}-\frac{2}{3} t^{\frac{3}{2}}\right)+C= \\
\frac{1}{5} t^{\frac{5}{2}}-\frac{1}{3} t^{\frac{3}{2}}+C=\frac{1}{5}\left(1+x^{2}\right)^{\frac{5}{2}}-\frac{1}{3}\left(1+x^{2}\right)^{\frac{3}{2}}+C
\end{gathered}
$$

But just as much as it is easy to find the differential [derivative] of a given quantity, so it is difficult to find the integral of a given differential. Moreover, sometimes we cannot say with certainty whether the integral of a given quantity can be found or not.

