(Calculator Free)

1. [10 pts] The graph of a rational function is shown below. Assume that
zeroes: $\mathrm{x}=0, \mathrm{x}=3$
singularities: $\quad x=-2, x=-4$
limiting behavior: $\mathrm{y} \rightarrow 3$ as $|\mathrm{x}| \rightarrow \infty$

Find an equation of a rational function that incorporates all of this information. (Note that this problem has more than one correct answer.)

Solution:

Given the information about the zeros, we find that x and $x+3$ must be factors of the numerator.
Given the information about the singularities, $x+2$ and $x+4$ must be factors of the denominator.
Since the zero at $x=0$ does not create a sign change, we find that x^{2} or any even power of x, must be a factor of the numerator. Since the singularity at $x=-4$ also results in no sign change, we find that $(x+$ $4)^{2}$ or any even power of $x+4$, must be a factor of the denominator.

So our first guess is:

$$
y=\frac{x^{2}(x-3)}{(x+2)(x+4)^{2}}
$$

Noting that the value of y as $x \rightarrow \infty$ is 1 , we have only to make one change:

$$
y=\frac{3 x^{2}(x-3)}{(x+2)(x+4)^{2}}
$$

Of course, there are infinitely many other functions that would satisfy the requirements.
2. [6 pts each] Compute each of the following limits. Explain your reasoning.
(a) $\lim _{x \rightarrow \infty} \frac{\left(2 x^{3}+11\right)^{2}(3 x-91)^{3}}{\left(2 x^{2}+5\right)^{4}(x+2017)}$

Solution: Observe that:

$$
\frac{\left(2 x^{3}+11\right)^{2}(3 x-91)^{3}}{\left(2 x^{2}+5\right)^{4}(x+2017)} \cong \frac{\left(2 x^{3}\right)^{2}(3 x)^{3}}{\left(2 x^{2}\right)^{4} x}=\frac{4(27)}{16}\left(\frac{x^{9}}{x^{9}}\right) \rightarrow \frac{27}{4} \text { as } x \rightarrow \infty
$$

(b) $\lim _{x \rightarrow 2} \frac{\frac{1}{x^{2}}-\frac{1}{4}}{x-2}$

Solution: Observe that, as long as $x \neq 2$:

$$
\begin{aligned}
& \frac{\frac{1}{x^{2}}-\frac{1}{4}}{x-2}=\frac{\frac{4}{4 x^{2}}-\frac{x^{2}}{4 x^{2}}}{x-2}=\frac{4-x^{2}}{4 x^{2}(x-2)}= \\
& \frac{-(x-2)(2+x)}{4 x^{2}(x-2)}=\frac{-(2+x)}{4 x^{2}} \rightarrow-\frac{4}{16}=-\frac{1}{4} \text { as } x \rightarrow 2
\end{aligned}
$$

(c) $\lim _{x \rightarrow 5} \frac{2 x^{2}-9 x-5}{x^{2}-8 x+15}$

Solution: Observe that, as long as $x \neq 5$:

$$
\frac{2 x^{2}-9 x-5}{x^{2}-8 x+15}=\frac{(x-5)(2 x+1)}{(x-5)(x-3)}=\frac{2 x+1}{x-3} \rightarrow \frac{11}{2} \text { as } x \rightarrow 5
$$

(d) $\lim _{x \rightarrow 0} \frac{\sqrt{x+4}-2}{x}$

Solution: We begin by rationalizing the numerator of the algebraic expression. Then we assume that, as long as $x \neq 0$:

$$
\begin{aligned}
& \frac{\sqrt{x+4}-2}{x}=\left(\frac{\sqrt{x+4}-2}{x}\right)\left(\frac{\sqrt{x+4}+2}{\sqrt{x+4}+2}\right)=\frac{x}{(x)(\sqrt{x+4}+2)}= \\
& \frac{1}{\sqrt{x+4}+2} \rightarrow \frac{1}{\sqrt{4}+2}=\frac{1}{4} \text { as } x \rightarrow 0 .
\end{aligned}
$$

3. [8 pts] Does $\lim _{x \rightarrow 1} g(x)$ exist given that

$$
\text { Let } g(x)=\frac{3 x^{2}-4 x+1}{x^{4}-1}
$$

If so, find it; if not explain! (Hint: Factor first.)

Solution: Let's begin by factoring, noting that the denominator is a difference of two squares.

$$
g(x)=\frac{(x-1)(3 x-1)}{\left(x^{2}+1\right)(x+1)(x-1)}
$$

Now, as $x \rightarrow 1$, we can cancel the $x-1$ factor occurring both in the numerator and the denominator. So, for $x \neq 1$:

$$
g(x)=\frac{3 x-1}{\left(x^{2}+1\right)(x+1)}
$$

Now, as $x \rightarrow 1, g(x) \rightarrow 2 / 4=1 / 2$.
Thus $\lim _{x \rightarrow 1} g(x)$ exists and equals $1 / 2$.

EXTR\& CREDIT: University of Michigan calculus problem (first exam, 7 Oct 2014)
Consider the function $\mathrm{y}=\mathrm{h}(\mathrm{x})$ defined by:

$$
h(x)=\left\{\begin{array}{cc}
\frac{60\left(x^{2}-x\right)}{\left(x^{2}+1\right)(3-x)} & \text { for } x<2 \\
9 & \text { for } x=2 \\
5 e^{a x}-1 & \text { for } x>2
\end{array}\right.
$$

Solution: In order for $\lim _{x \rightarrow 2} h(x)$ to exist, it must be true that $\lim _{x \rightarrow 2+} h(x)=\lim _{x \rightarrow 2-} h(x)$
Now $=\lim _{x \rightarrow 2-} h(x)=60\left(2^{2}-2\right) /\left(\left(2^{2}+1\right)(3-2)\right)=24$ and $\lim _{x \rightarrow 2+} h(x)=5 e^{2 a}-1$.
So it follows that $5 e^{2 a}-1=24$.
Solving for a, we have $5 e^{2 a}-1=24 ; \quad e^{2 a}=5 ;$ thus $a=\ln (5) / 2 \approx 0.804$.

