
MATH 161             Solutions:   QUIZ III          

15 September 2017 
 

 

1.   (a)  [4 pts ] Carefully state the Intermediate Value Theorem. 

 

Theorem:  Let y = f(x) be a continuous function on an interval [a, b].  Let z be any number between f(a) 

and f(b).  Then there exists a number c in the interval [a, b] for which f(c) = z. 

 

 

(b)    [5 pts]   Using the IVT explain why the function f(x) = x + 3 – 2 sin x must have at least one real 

root. 

Solution:  Note that f(0) = 3 > 0 and G( ) = 3 + 3 – 2 sin x  > 6 – 2 = 4 > 0 

Also note that f  is continuous on the interval [0, ].  Since G(4) < 0 < G(), the IVT guarantees the 

existence of a root of the equation G(x) = 0 in the interval [0, ]. 

 

 

 

 

 

2.   [5 pts]  Using the Squeeze Theorem, show that the function 
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has a limit as x → 0 and find the value of this limit.   (You need not state the general theorem; only show 

how it can be applied here.) 

 

 

Solution:  First, a brief review of the Squeeze theorem. 

Theorem:  Let v(x), z(x), u(x) be functions defined on an interval (a, b) except possibly at the point p, 

where p(a, b) 

In addition, assume that  
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Returning to the original question: 

  Using the Squeeze Theorem, find  
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Solution: 
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Now, as x → 0, 3x4 → 0 and  - 3x4 → 0. 

 

Thus, invoking the Squeeze Theorem, we obtain: 

 

0
1732

cos3lim
3

4

0










 x

x
x

x
 

 

 

3.  [12 pts] Compute each of the following limits.  As usual, show your work. 

 

(A)   
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Solution:  Since 04coslim
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 we can use the limit law for quotients: 
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(C)     
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Solution:  Since 0lim
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 we can use the limit law for quotients: 
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4.   [6 pts]  For the graph of y = f (x) in the figure below, arrange the following numbers from smallest to 

largest: 
 

A         The slope of the curve at A. 

B         The slope of the curve at B. 

C         The slope of the curve at C. 

AB      The slope of the line AB. 

0   The number 0. 

1   The number 1. 

Explain the positions of the number 0 and the number 1 in your ordering.  Any unclear answers will not 

receive credit. 
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5.   [2 pts]  To find the derivative of 
2( ) 2 5 9g x x x    at x = 8 algebraically, one must evaluate the 

following expression. 

(𝐴)      lim
ℎ→0

2(8 + ℎ)2 + 5(8 + ℎ) − (2 ∙  82 + 5 ∙  8 − 9)

ℎ
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(D) All of the above are correct.   (E) None of the preceding is correct 

 

 Explain how you arrived at your answer! 

 

 

Solution: The correct answer is (E): None of the preceding is correct. 

Note that (A) is not correct since it is missing  -9: The correct version of (A) is: 

 

   lim
ℎ→0

2(8 + ℎ)2 + 5(8 + ℎ) − 9 − (2 ∙  82 + 5 ∙  8 − 9)

ℎ
 

 

 

6. [2 pts] Given the following data about a function  f(x), the equation of the tangent line at x = 5 is 

approximated by  

x 3 3.5 4 4.5 5 5.5 6 

f(x) 10 8 7 4 2 0 -1 

 

 (A) 5 –4( 2)y x    (C) 2 –4( 5)y x    

 (B) 5 –8( 2)y x    (D) 2 –8( 5)y x  
 

 

 Explain how you arrived at your answer! 

 

Solution:  Approximating the slope of the curve y = f(x) at x = 5: 

 

𝑓′(5) ≈
𝑓(5.5)−𝑓(5)

5.5−5
=

0−2

0.5
  = -4   or  𝑓′(5) ≈

𝑓(4.5)−𝑓(5)

4.5−5
=

4−2

−0.5
  = -4 

𝑆𝑜 𝑡ℎ𝑒 𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑙𝑖𝑛𝑒 𝑡𝑜 𝑦 = 𝑓(𝑥) 𝑎𝑡 𝑥 = 5 𝑖𝑠 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑙𝑦 − 4. 

𝑁𝑜𝑡𝑒 𝑡ℎ𝑎𝑡 𝑓(5) = 2. 

Using point-slope form:   y – 2 = -4(x – 5) 

So the correct choice is (C). 

 

7.  [University of Michigan] Odette, a dare devil, jumps off the side of a bungee jumping platform while 

attached to a magically elastic bungee cord. Just a few moments after the jump begins, a timer is started 

and her position is recorded. At t seconds after the timer begins, her distance in feet below the platform 

is given by the function 

J (t) = −150 cos(0.125π(t + 3)) + 150. 

 

A portion of the graph of y = J(t) is shown below. 
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Throughout this problem, do not make estimates using the graph. 

 

(a)  [2 pts] Compute the average velocity of the bungee jumper during the first 16 seconds after 

the timer begins. 

 

 

 
 

 

(b)   [3 pts]  Compute the average speed of the bungee jumper during the first 16 seconds after 

the timer begins. 

Hint:   Recall that average speed over an interval of time is given by     
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑

𝑡𝑖𝑚𝑒 𝑒𝑙𝑎𝑝𝑠𝑒𝑑
.  

 

 

 

(c) [4 pts] Use the limit definition of instantaneous velocity to write an explicit expression for the 

instantaneous velocity of the bungee jumper 2 seconds after the timer begins. Your answer 

should not involve the letter J. Do not attempt to evaluate or simplify the limit. 
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(d) [2 pts] Find all values of t in the interval 0 ≤ t ≤ 30 when the instantaneous velocity of the 

bungee jumper is 0 feet per second. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

The more you know, the less sure you are. 

 

- Voltaire 

http://plato.stanford.edu/entries/voltaire/

