1. [2 pts] What does the following figure represent? Explain briefly.

Answer: (D) is the correct answer. The two rectangles are of width 6 and each is left-hand.
2. [2 pts each] Using the given graphs, draw rectangles representing each of the following Riemann sums for the function on the interval [0,12]. Calculate the value of each Riemann sum. (You may leave your answer in non-simplified form if you have no time to perform the addition.)
(a) Left end-point sum with $\Delta t=3$.

Solution:

$16-\frac{x^{2}}{9}$

This is an overestimate.
(b) Right end-point sum with $\Delta t=3$.

Solution:

This is an underestimate.
(c) Left end-point sum with $\Delta t=6$.

Solution:

This is an overestimate.
(d) Right end-point sum with $\Delta t=6$.

Solution:
$16-\frac{x^{2}}{9}$

This is an underestimate.
3. [3 pts each] Compute each of the following sums. Show your work! Simplify your answers as much as possible.
(a) $\sum_{j=3}^{6}(j-1)(j+1)$

Solution:

$$
\begin{aligned}
& \sum_{j=3}^{6}(j-1)(j+1)= \\
& (2)(4)+(3)(5)+(4)(6)+(5)(7)=8+15+24+35=82
\end{aligned}
$$

(b) $\sum_{k=0}^{2017}(-1)^{k}$

Solution:
$\sum_{k=0}^{7}(-2)^{k}=$
$(-1)^{0}+(-1)^{1}+(-1)^{2}+(-1)^{3}+(-1)^{4}+(-1)^{5}+\ldots+(-1)^{2016}+(-1)^{2017}=$
$1-1+1-1+1-1-1+\ldots+1-1=$
$(1-1)+(1-1)+(1-1)+\ldots+(1-1)=0$
(c) $\quad \sum_{n=1}^{9}\left(\frac{1}{n}-\frac{1}{n+1}\right)$

Solution:

$$
\begin{aligned}
& \sum_{n=1}^{9}\left(\frac{1}{n}-\frac{1}{n+1}\right)= \\
& \left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\left(\frac{1}{8}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{10}\right) \\
& =1-\frac{1}{10}=\frac{9}{10}
\end{aligned}
$$

4. [University of Michigan] [6 pts] Find the (exact value of the) area beneath the following function over the interval $[0,10]$. Show your work! If time permits, do the arithmetic.

Solution: Adding the areas of each of the two trapezoids and the triangle yields:

$$
A=35+40.5+29=104.5 \text { square units }
$$

Alternatively, one can compute the area of five triangles and two rectangles.
5. [5 pts] Evaluate $\int\left(1+2 x-\cos x+e^{4 x}\right) d x$

Solution:

$$
\begin{aligned}
& \int\left(1+2 x-\cos x+e^{4 x}\right) d x=\int 1 d x+\int 2 x d x-\int \cos x d x+\int e^{4 x} d x= \\
& x+x^{2}-\sin x+(1 / 4) e^{4 x}+C
\end{aligned}
$$

6. [5 pts] Albertine claims that the following anti-differentiation formula is correct:

$$
\int x^{3} e^{x} d x=\left(x^{3}-3 x^{2}+6 x-6\right) e^{x}+C
$$

Determine whether Albertine is correct or mistaken. You must show your work to earn credit. Solution: Differentiating the right-hand side (using the product rule)

$$
\begin{aligned}
& \frac{d}{d x}\left(\left(x^{3}-3 x^{2}+6 x-6\right) e^{x}+C\right)= \\
& \left(x^{3}-3 x^{2}+6 x-6\right) e^{x}+\left(3 x^{2}-6 x+6\right) e^{x}+0= \\
& \left(\left(x^{3}-3 x^{2}+6 x-6\right)+\left(3 x^{2}-6 x+6\right)\right) e^{x}= \\
& x^{3} e^{x}
\end{aligned}
$$

7. [5 pts] Solve the following initial value problem:

$$
\frac{d y}{d x}=(1+3 x)^{48}+x+5 ; \quad y(0)=\frac{1}{98}
$$

Solution: Using judicious guessing,

$$
y=\int\left((1+3 x)^{48}+x+5\right) d x=\frac{(1+3 x)^{49}}{49(3)}+\frac{x^{2}}{2}+5 x+C .
$$

Using the initial condition, $\frac{1}{98}=\frac{(1+3(0))^{49}}{49(3)}+\frac{0}{2}+5(0)+C=\frac{1}{49(3)}+C$

Hence $C=\frac{1}{98}-\frac{1}{49(3)}=\frac{1}{2(49)}-\frac{1}{49(3)}=\frac{1}{49}\left(\frac{1}{2}-\frac{1}{3}\right)=\frac{1}{49(6)}=\frac{1}{294}$.

Finally, the solution to the initial value problem is

$$
y=\frac{(1+3 x)^{49}}{147}+\frac{x^{2}}{2}+5 x+\frac{1}{294} .
$$

Common integration is only the memory of differentiation.

- Augustus de Morgan

Augustus De Morgan (1806-1871)

DERIVATIVE RULES

$$
\begin{array}{lll}
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} & \frac{d}{d x}(\sin x)=\cos x & \frac{d}{d x}(\cos x)=-\sin x \\
\frac{d}{d x}\left(a^{x}\right)=\ln a \cdot a^{x} & \frac{d}{d x}(\tan x)=\sec ^{2} x & \frac{d}{d x}(\cot x)=-\csc ^{2} x \\
\frac{d}{d x}(f(x) \cdot g(x))=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x) & \frac{d}{d x}(\sec x)=\sec x \tan x & \frac{d}{d x}(\csc x)=-\csc x \cot x \\
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \cdot f^{\prime}(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}} & \frac{d}{d x}(\arcsin x)=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}(\arctan x)=\frac{1}{1+x^{2}} \\
\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) & \frac{d}{d x}(\operatorname{arcsec} x)=\frac{1}{x \sqrt{x^{2}-1}} & \frac{d}{d x}(\sinh x)=\cosh x \\
\frac{d}{d x}(\ln x)=\frac{1}{x} & \frac{d}{d x} &
\end{array}
$$

