MATH 161 SOLUTIONS: QUIZ IX

10 NOVEMBER 2017

1. Evaluate each of the following Riemann integrals using only basic geometry. Explain your reasoning! Give an exact answer. [4 pts each]
(a) $\int_{0}^{3}(1+8 x) d x$

Solution: $\int_{0}^{3}(1+8 x) d x$

This Riemann integral represents the area of a rectangle of height 1 and width 3 plus the area of a triangle with base 3 and height 24.

Thus $A=1(3)+1 / 2(3)(24)=39$
(b) $\int_{-4}^{4} 3 \sqrt{16-t^{2}} d t$

Solution:

Note that $\int_{-4}^{4} 3 \sqrt{16-t^{2}} d t=3 \int_{-4}^{4} \sqrt{16-t^{2}} d t$

Hence $A=31 / 2 \pi 4^{2}=\mathbf{2 4} \pi$

(c) $\int_{-5}^{7}|z-5| d z$

Solution: Here the integrand represents a region determined by two triangles.
So $A=1 / 2(10)(10)+1 / 2(2)(2)=52$

2. Let $f(x)=4 x^{3}-8 x^{2}+7 x-2$ be defined on the interval $[2,5]$.
(a) [2 pts] Explain why $\mathrm{y}=\mathrm{f}(\mathrm{x})$ satisfies the hypotheses of the Mean Value Theorem.

Answer: Since f is a polynomial, it is continuous on [2, 5] and differentiable on (2,5).
(b) [4 pts] Find any and all numbers, c, that satisfy the conclusion of the Mean Value Theorem. Express your answer(s) to the nearest hundredth.

Solution: Computing: $f(5)-f(2)==107$

$$
\text { Now: } f^{\prime}(x)=12 x^{3}-16 x^{2}+7
$$

We must solve the equation: $\quad f^{\prime}(c)=\frac{f(5)-f(2)}{5-2}=\frac{333-12}{3}=107$.
Now $f^{\prime}(c)=12 c^{3}-16 c^{2}+7=107$, or equivalently: $12 c^{3}-16 c^{2}-100=0$.
Dividing both sides by 4: $\quad 3 c^{3}-4 c^{2}-20=0$.
Factoring: $\quad(3 c-10)(c+2)=0$.
Thus $c=10 / 3, c=-2$. We reject the root $c=-2$ since it doesn't lie within the domain of f.
So $c=10 / 3 \approx 3.33$
See the graph below.

3. The graph in the figure below is the graph of $\frac{d h}{d t}$, where h is the altitude in thousands of feet above sea level and t is in hours, for Albertine's recent climb to the top of Bear Peak in Colorado. Use the graph to answer the following questions. Show your work! [3 pts each]

(a) How long did it take Albertine to reach the peak of the mountain?

Solution: $h(t)$ is increasing on the interval [0, 4]. Thus Albertine took 4 hours to reach the summit of the mountain.
(b) What was the total change in altitude between $\mathrm{t}=0$ and $\mathrm{t}=4$?

Solution: $\quad h(4)-h(0)=$ area beneath the curve dh/dt that lies above [0, 4]. This may be thought of as the area of a rectangle plus the area of a triangle.
Hence, change in altitude is $(0.8)(2)+1 / 2(2)(0.8)=2.4$ thousand feet .
(c) If Albertine began her climb at 6000 feet above sea level, how high is the peak above sea level?

Solution: The peak is $6000+2400=8400$ feet above sea level.
(d) After 6 hours, Albertine stopped at a lookout point to have a snack. What was the altitude of the lookout point?

Solution: Albertine's descent from $t=4$ to $t=6$ is $1 / 2(2)(0.8)=0.8$ thousand feet.
Hence, at $t=6$, Albertine's altitude is $6000+2400-800=7600$ feet .
4. Below is the graph of the velocity, in feet per second, $0 \leq \mathrm{t} \leq 13$, of a frightened skunk as it tries to run away from a German Shepard. From $t=0$ to $t=2$, we have a quarter of a circle; from $t=2$ to $t=8$, we have a semicircle; from $t=8$ until $t=13$, we have a straight line segment.
[Note that this is the graph of velocity, not distance.]

(a) [5 pts] What is the total distance traveled by the skunk between $\mathrm{t}=0$ and $\mathrm{t}=13$ seconds? Give an answer correct to the nearest hundredth.

Solution: The distance traveled by the skunk is the area under the velocity curve between $t=0$ and $t=13$ seconds. This sum consists of the area of a quarter circle of radius $2+$ the area of a halfcircle of radius $3+$ the area of a triangle with base length 5 and height 10.

Thus the total distance $=(1 / 4) \pi(2)^{2}+(1 / 2) \pi(3)^{2}+1 / 2(5)(10)=5.5 \pi+25$ feet $\approx \mathbf{4 2 . 2 8}$ feet .
(b) [3 pts] What is the average velocity traveled by the skunk between $\mathrm{t}=0$ and $\mathrm{t}=13$ seconds? Give an answer correct to the nearest hundredth.

Solution: The average velocity from $t=0$ to $t=13$ seconds is the change in position (which, in this exercise, equals the total distance traveled from $t=0$ to $t=13$) divided by 13, viz:

$$
(5.5 \pi+25) / 13 \mathrm{feet} / \mathrm{sec} \approx 3.25 \mathrm{feet} / \mathrm{sec}
$$

(c) [3 pts] What is the average velocity traveled by the skunk between t=2 and t=10 seconds? Give an answer correct to the nearest hundredth.

Solution: The average velocity from $t=2$ to $t=10$ seconds is the change in position (which, in this exercise, equals the total distance traveled from $t=2$ to $t=10$) divided by 8 .

Now the total distance is the sum of the area of a half-circle of radius 3 and the area of a triangle with base length 2 and height 4, viz:
$(4.5 \pi+4) / 8$ feet $/ \mathrm{sec} \approx 2.27 \mathrm{feet} / \mathrm{sec}$

EXTRA CREDIT:

Consider the graph of $y=f(x)$ defined on the interval $[0,6]$ as represented below.

Let $G(x)=\int_{0}^{x} f(t) d t$ be defined for $0 \leq x \leq 6$.
(a) What is the minimum value of $\mathrm{G}(\mathrm{x})$ on the interval $[0,6]$ and where is that value achieved? Explain your reasoning.

Solution: Note that G is a function of x alone!
Using the area interpretation of the definite integral, one can see that the integral is minimized when $\boldsymbol{x}=1.5$. Now

$$
\begin{aligned}
& G(1.5)=\int_{0}^{1.5} f(t) d t=\int_{0}^{1} f(t) d t+\int_{1}^{1.5} f(t) d t= \\
& -1-0.25=-1.25
\end{aligned}
$$

(b) What is the maximum value of $\mathrm{G}(\mathrm{x})$ on the interval $[0,6]$ and where is that value achieved? Explain your reasoning.

Solution: Note that G is a function of x alone!
Using the area interpretation of the Riemann integral, one can see that the integral is maximized when $x=4.5$. Now

$$
\begin{aligned}
& G(4.5)=\int_{0}^{4.5} f(t) d t=\int_{0}^{1} f(t) d t+\int_{1}^{2} f(t) d t+\int_{2}^{4} f(t) d t+\int_{4}^{4.5} f(t) d t= \\
& -1+0+2+(1 / 2)(1 / 2)(1)=1.25
\end{aligned}
$$

Thus the maximum value achieved by $G(x)$ on the interval [0, 6] is $\mathbf{1 . 2 5}$.

[^0]
[^0]: "Mario, what do you get when you cross an insomniac, an unwilling agnostic and a dyslexic?"
 "I give."
 "You get someone who stays up all night torturing himself mentally over the question of whether or not there's a dog."

