WORKSHEET X

Chain Rule, Implicit Differentiation, Logarithmic Differentiation,

 Inverse Trig functions

I Compute dy/dx using the Chain Rule:

1. $y=(1+\sin x)^{8}$
2. $y=\sqrt{5+x^{3}+2 x^{5}}$
3. $y=e^{1+\cos x}$
4. $y=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\tanh x$
5. $y=\sin (13 \cos x)$
6. $y=e^{4 x} \tan 5 x$
7. $y=\sin ^{4} x+\sqrt{3 x+11}$
8. $y=(x+1)^{5}(3 x-13)^{7}$
9. $y=\frac{\sec 3 x}{\sqrt{2 x+1}}$
10. $y=\sec (x+\ln x)$

II For each of the following curves, find all critical points (i.e., points for which $\mathrm{dy} / \mathrm{dx}=0$).

1. $y=(x+1)^{5}(2 x-1)^{8}$
2. $y=e^{-3 x}(x+4)^{9}$
3. $y=\frac{(3 x-5)^{5}}{(2 x+1)^{3}}$
4. $y=x+\sin x$
5. $y=13 x+3 \sin 4 x$

III 1. Given $\mathrm{y}=\tan ^{2}(\pi \mathrm{u} / 8)$ and $\mathrm{u}=1+2 \mathrm{x}^{2}-4 \mathrm{x}^{3}+3$, find $d y / d \mathrm{x}$ when $\mathrm{x}=1$.
2. Sketch the curve $y=(2 x-1)^{4}(3 x+1)^{5}$ and locate all zeroes, perform a sign analysis, study limiting behavior and locate all critical points.
3. Sketch the curve $y=e^{x}(x-1)^{4}$ and locate all zeroes, perform a sign analysis, study limiting behavior and locate all critical points.
4. Show that the derivative of $\ln \mathrm{x}$ is $1 / \mathrm{x}$. (Hint: Let $\mathrm{y}=\ln \mathrm{x} ;$ then $\mathrm{x}=\mathrm{e}^{\mathrm{y}}$.)
5. Find $d y / d x$ if $y=\ln (\sec x+\tan x)$ and simplify your answer.
6. Find $d x / d t$ if $x(t)=\ln (\ln (t))$.

IV Using implicit differentiation, find dy/dx:

1. $y+x=x y+7$
2. $y^{2}=x^{2}+\sin x y$
3. $y \sin \frac{1}{y}=1-x y$

V 1. Prove the power rule for rational exponents, viz.

$$
(\mathrm{d} / \mathrm{d} \mathrm{x}) \mathrm{x}^{\mathrm{p}}=\mathrm{px}^{\mathrm{p}-1} \text { if } p \text { is rational. }
$$

2. Find $d^{2} y / d x^{2}$ if $y^{2}+x y=1$.
3. Consider the curve defined implicitly by: $x^{2}+x y-y^{2}=1$. Verify that the point $P=$ $(2,3)$ lies on this curve. Find the equations of the tangent and normal lines to this curve at the point P.
4. Find equations for the tangent and normal lines to the cissoid of Diocles (from 200 B.C.):

VI Using implicit differentiation, find dy/dx for each of the following inverse trig functions.

$$
y=\arcsin x, y=\arctan x, \text { and } y=\operatorname{arcsec} x
$$

VII Find dy/dx for each of the following:

1. $y=\arcsin (2 x+5)$
2. $y=\arctan \left(\frac{1}{x}\right)$
3. $y=\ln (\operatorname{arcsec} x)$
4. $y=\left(\arcsin \left(x^{2}\right)\right)^{5}$

VIII Using logarithmic differentiation, find dy/dx for each of the following:

1. $y=x(x+1)^{5}(3 x-4)^{11}$
2. $y=\frac{5 x+7}{\sqrt{3 x+5}}$
3. $y=\sqrt{\frac{x(3 x+1)(2 x+5)}{(x-4)(7 x-1)}}$

It is often better to be in chains than to be free.

- Franz Kafka, The Trial

