WORKSHEET X

Chain Rule, Implicit Differentiation, Logarithmic Differentiation,

Inverse Trig functions

- **I** Compute dy/dx using the Chain Rule:
 - 1. $y = (1 + \sin x)^8$
 - 2. $y = \sqrt{5 + x^3 + 2x^5}$
 - 3. $y = e^{1 + \cos x}$
 - 4. $y = \frac{e^x e^{-x}}{e^x + e^{-x}} = \tanh x$
 - 5. $y = \sin(13\cos x)$
 - $6. \quad y = e^{4x} \tan 5x$
 - 7. $y = \sin^4 x + \sqrt{3x + 11}$
 - 8. $y = (x+1)^5 (3x-13)^7$

9.
$$y = \frac{\sec 3x}{\sqrt{2x+1}}$$

10.
$$y = \sec(x + \ln x)$$

- **II** For each of the following curves, find all *critical points* (i.e., points for which dy/dx = 0).
 - 1. $y = (x+1)^5 (2x-1)^8$
 - 2. $y = e^{-3x}(x+4)^9$
 - 3. $y = \frac{(3x-5)^5}{(2x+1)^3}$
 - 4. $y = x + \sin x$
 - 5. $y = 13x + 3\sin 4x$
- **III** 1. Given $y = tan^2 (\pi u/8)$ and $u = 1 + 2x^2 4x^3 + 3$, find dy/dx when x = 1.
 - 2. Sketch the curve $y = (2x 1)^4(3x + 1)^5$ and locate all zeroes, perform a sign analysis, study limiting behavior and locate all critical points.
 - 3. Sketch the curve $y = e^{x}(x 1)^{4}$ and locate all zeroes, perform a sign analysis, study limiting behavior and locate all critical points.
 - 4. Show that the derivative of ln x is 1/x. (*Hint*: Let $y = \ln x$; then $x = e^{y}$.)
 - 5. Find dy/dx if $y = \ln(\sec x + \tan x)$ and simplify your answer.
 - 6. Find dx/dt if $x(t) = \ln(\ln(t))$.

IV Using implicit differentiation, find dy/dx:

1. y + x = xy + 7

$$2. \quad y^2 = x^2 + \sin xy$$

$$3. \quad y\sin\frac{1}{y} = 1 - xy$$

V 1. Prove the power rule for *rational* exponents, *viz*.

 $(d/dx) x^p = px^{p-1}$ if *p* is rational.

2. Find d^2y/dx^2 if $y^2 + xy = 1$.

3. Consider the curve defined implicitly by: $x^2 + xy - y^2 = 1$. Verify that the point P = (2, 3) lies on this curve. Find the equations of the *tangent* and *normal* lines to this curve at the point *P*.

4. Find equations for the *tangent* and *normal* lines to the *cissoid of Diocles* (from 200 B.C.):

VI Using implicit differentiation, find dy/dx for each of the following inverse trig functions.

 $y = \arcsin x$, $y = \arctan x$, and $y = \operatorname{arcsec} x$.

VII Find dy/dx for each of the following:

1.
$$y = \arcsin(2x+5)$$

2.
$$y = \arctan\left(\frac{1}{x}\right)$$

- 3. $y = \ln(\operatorname{arcsec} x)$
- 4. $y = \left(\arcsin(x^2)\right)^5$

VIII Using logarithmic differentiation, find dy/dx for each of the following:

1.
$$y = x(x+1)^{5}(3x-4)^{11}$$

2. $y = \frac{5x+7}{\sqrt{3x+5}}$
3. $y = \sqrt{\frac{x(3x+1)(2x+5)}{(x-4)(7x-1)}}$

It is often better to be in chains than to be free.

- Franz Kafka, The Trial

 COURSE HOME PAGE
 DEPARTMENT HOME PAGE
 LOYOLA HOME PAGE