WORKSHEET XII

CURVE SKETCHING

M. C. Escher: Concave and Convex

- **1.** Sketch each of the following curves, y = f(x). Follow the three-stage plan:
- precalculus analysis, (2) first-derivative analysis (finding all critical points and identifying local & global extrema), and (3) second-derivative analysis.
 - (a) $y = 2x^3 14x^2 + 22x 13$
 - (b) $y = x^4 4x^3 + 10$

(c) $y = xe^x$

(d)
$$y = x^{4}(x-5)$$

(e) $y = x^{2}\ln x$
(f) $y = x e^{-2x}$
(g) $y = (x-1)^{4}(x-2)^{9}$
(h) $y = \frac{(x+1)^{2}}{1+x^{2}}$
(i) $y = \frac{(x-1)^{2}}{(x+3)^{2}}$
(j) $y = e^{-(x-3)^{2}}$
(k) $y = \frac{(x-1)^{2}}{(x+3)^{2}}$
(l) $y = x^{3}(2x-5)^{8}$
(m) $y = x + \sin x$
(n) $y = x + 2\cos x$
(0) $y = e^{2/x}$
(p) $y = (x^{2} + 4)/(2x)$

2. Determine all local and global extrema of the following functions, each defined on a given *closed and bounded* interval.

(a)
$$y = x + 4/x$$
 on [1, 3]

(b)
$$y = \sqrt{5 - x^2}$$
 on [-1,1]
(c) $y = x^{10} - 10x$ on [-1,2]
(d) $y = x^3 + 6x^2 + 1$ on [-1,1]
(e) $y = x^3 + x^5 + x^7$ on [-1, 1]
(f) $y = x \sin x$ on $[0, \frac{\pi}{3}]$
(g) $y = x^2 + \frac{16}{x^2}$ on [-2, -1]
(h) $y = \frac{x}{x^4 + 48}$ on [-10, 10]

3. For each graph of y = g'(x) given below, draw the graphs of y = g(x) and that of y = g''(x).

4. Given that the derivative of a smooth function y = f(x) is

 $y' = (x - 1)^2(x - 2)(x - 4)$

Determine all points (if any) at which y has a local minimum, local maximum, or point of inflection.

5. Given that the second derivative of a smooth function y = f(x) is

$$y'' = x(x-3)^2(x-2)^3(x-4)(x-9)^{2014}$$

find any and all points of inflection.

6. What is meant by the **First Derivative Test** for finding local extrema? What is the **Second Derivative Test** for finding local extrema?

7. Use the *Second Derivative Test* to find any and all local extrema of each of the following curves:

(a) $y = x^4 - 4x^3$ (b) $y = x^4/4 - 2x^3 + 6$

(c)
$$y = 3x^5 - 5x^3 + 3$$

Everyone knows what a curve is, until he has studied enough mathematics to become confused through the countless number of possible exceptions.

- Felix Klein

