WORKSHEET XIII

HYPERBOLIC FUNCTIONS

The St. Louis arch is in the shape of a hyperbolic cosine.
Hyperbolic functions are very useful in both mathematics and physics. You may have already encountered them in precalculus. If not, here are their definitions:

$$
\begin{aligned}
& \sinh x=\left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}\right) / 2 \\
& \cosh \mathrm{x}=\left(\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-x}\right) / 2 \\
& \tanh \mathrm{x}=\sinh (\mathrm{x}) / \cosh (\mathrm{x}) \\
& \operatorname{coth} x=1 / \tanh (\mathrm{x}) \\
& \operatorname{sech} x=1 / \cosh (x) \\
& \operatorname{csch} x=1 / \sinh (x)
\end{aligned}
$$

Oddly enough, they enjoy certain similarities with the trigonometric functions, with which you are much more familiar.

1. Graph the six hyperbolic functions: $\sinh x, \cosh x, \tanh x, \operatorname{coth} x, \operatorname{sech} x, \operatorname{csch} x$. For each curve, determine the limit of y as x tends toward infinity or negative infinity. Which of the
functions are odd? which are even? (Remember that an odd function is one that is symmetric with respect to the origin; an even function is one that is symmetric with respect to the y-axis.)
2. Find the derivative of each of the six hyperbolic functions.
3. Expand $\cosh (x+y), \cosh (2 x), \tanh (x+y)$, and $\tanh (2 x)$.
4. Show that $(\cosh x)^{2}-(\sinh x)^{2}=1$.
5. Show that $1-(\tanh x)^{2}=(\operatorname{sech} x)^{2}$.
6. Show that:

$$
\cosh \frac{x}{2}=\sqrt{\frac{\cosh x+1}{2}}
$$

(Note that this corresponds to the half-angle formula for cosine. Similar formulas exist for $\sinh (\mathrm{x} / 2)$ and $\tanh (\mathrm{x} / 2)$.)

Hint: Compare the squares of each of the two sides.
7. Find the limit of $(\sinh x) / e^{x}$ as x tends toward infinity.
8. Simplify the expression:

$$
\sinh \left(\ln \left(x+\sqrt{x^{2}+1}\right)\right)
$$

Use your answer to find a formula for the inverse of $\sinh (x)$.
9. The inverse of $\sinh x$ in Mathematica is represented by $\operatorname{ArcSinh}[x]$. Graph the curve $\mathrm{y}=\operatorname{ArcSinh}(\mathrm{x})$. Find formulas for the derivative and the integral of $\operatorname{arcsinh}(\mathrm{x})$.
10. Repeat question 9 for the functions $\operatorname{ArcCosh}(\mathrm{x})$ and $\operatorname{ArcTanh}(\mathrm{x})$.
11. If the ends of a chain are attached to the points $(-1,0)$ and $(1,0)$ in the Cartesian plane, the chain will take the shape of the curve (called a catenary) given by:

$$
f(x)=\frac{\cosh (a x)-\cosh a}{a}
$$

where the constant a depends upon the length of the chain. Show that for any value of a, the graph of $y=f(x)$ passes through the two points $(-1,0)$ and $(1,0)$.

Vincenzo Riccati (1707-1775) is given credit for introducing the hyperbolic functions.

