WORKSHEET XVI

MVT, ANTI-DERIVATIVES, INDEFINITE INTEGRALS \&

INITLAL VALUE PROBLEMS

Math Bridge in Beijing
I (a) State Rolle's Theorem.
(b) State the Mean Value Theorem, and explain its geometric meaning.
(c) How is the MVT derived from Rolle's Theorem?
(d) Using the Mean Value Theorem, prove that if $d f / d x=d g / d x$ on (a, b), then there exists a constant C for which $\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})+\mathrm{C}$ for all $\mathrm{x} \in(\mathrm{a}, \mathrm{b})$.
(e) Let $f(x)=x^{3}-2 x+3$ be defined on the interval [1,3]. Apply the MVT to this function and find the corresponding value of c.
(f) Let $g(x)=1+3 \sin 2 x$ be defined on the interval $[0, \pi / 12]$. Apply the MVT to this function and find the corresponding value of c.

II Evaluate each of the following indefinite integrals (using the method of "judicious guessing"):
(a) $\int \frac{x^{4}+x^{3}+x+1}{x} d x$
(b) $\int \frac{e^{x}}{1+4 e^{x}} d x$
(c) $\int x^{2} e^{4 x^{3}} d x$
(d) $\int \frac{\sec ^{2} x}{1+\tan x} d x$
(e) $\int\left(\frac{1}{x^{2}}+\frac{3}{x^{2}+1}\right) d x$
(f) $\int \ln x d x($ Try $x \ln x$ as a first guess.)
$(g) \int \frac{\cos \left(\frac{1}{x}\right)}{x^{2}} d x$
(h) $\int x^{2}\left(11 x^{3}+99\right)^{51} d x$
(i) $\int t \sqrt[4]{1+2 t^{2}} d t$
(j) $\int \frac{1}{(\arcsin z) \sqrt{1-z^{2}}} d z$

III Solve each of the following differential equations (using the method of "judicious guessing").
(a) $\frac{d y}{d x}=\left(x+\frac{1}{x}\right)^{2}$
(b) $\frac{d y}{d x}=\sin ^{2} x \cos x$
(c) $\frac{d y}{d x}=(1+3 \ln x) \frac{1}{x}$
(d) $\frac{d^{2} y}{d x^{2}}=\sinh x$
(e) $\frac{d y}{d x}=\frac{\pi}{4} \sec ^{2}\left(\frac{\pi}{4} x\right)-\frac{2 \ln x}{x}$

IV Solve each of the following initial value problems (using the method of "judicious guessing"):
(a) $\frac{d y}{d x}=1+x+\sin \pi x, y(0)=5$
(b) $\frac{d y}{d x}=\tan ^{2} x, y(0)=7$
(c) $\frac{d y}{d x}=\frac{x^{2}}{x^{3}+1}+x^{3}+x+7, \quad y(0)=4$
(d) $\frac{d y}{d x}=(x+5) \sqrt{x}, \quad y(1)=1$
(e) $\frac{d y}{d x}=\frac{\sqrt{\ln x}}{x}, y(e)=11$

V Charlotte the spider is traveling along the x -axis with acceleration, $\mathrm{a}(\mathrm{t})$, given by:

$$
a=\sqrt{t}-\frac{1}{\sqrt{t}}
$$

Assume that at time $\mathrm{t}=0$ minute her velocity, $\mathrm{v}(0)$, is $4 / 3 \mathrm{~cm} / \mathrm{min}$ and her position, $\mathrm{x}(0)$, is $-4 / 15 \mathrm{~cm}$.
Where is Charlotte at time $\mathrm{t}=5$ minutes?

VI A grapefruit thrown upward has an initial velocity of $64 \mathrm{ft} / \mathrm{sec}$ from an initial height of 80 feet.
(Recall that the acceleration due to gravity is $-32 \mathrm{ft} / \mathrm{sec}^{2}$.)
(a) Find the position, $\mathrm{s}(\mathrm{t})$, of the grapefruit as a function of time t.
(b) When does the grapefruit hit the ground?

Verify the following integration formula:

$$
\int e^{x} \sin x d x=\frac{1}{2}\left(e^{x} \sin x-e^{x} \cos x\right)+C
$$

Michel Rolle (1652-1719)

