WORKSHEET XVIII

THE FTC

1. State the two versions of the Fundamental Theorem of Calculus.
2. Find the area beneath the given curve lying above the given interval:
(a) $f(x)=x^{3}$ above $[1,3]$
(b) $\mathrm{g}(\mathrm{x})=\sin \mathrm{x}$ over $[0, \pi]$
(c) $\mathrm{z}(\mathrm{x})=(\mathrm{x}-1)^{2}$ over $[0,3]$
(d) $\mathrm{h}(\mathrm{x})=(\ln \mathrm{x}) / \mathrm{x}$ over $[1,4]$
(e) $\mathrm{s}(\mathrm{t})=\mathrm{t}^{3}\left(2+3 \mathrm{t}^{4}\right)^{3}$ over $[0,1]$
3. For each function in (2), find the average value over the given interval.
4. Using the FTC, compute $\mathrm{g}^{\prime}(\mathrm{e})$ given that

$$
g(x)=\int_{0}^{x} t^{5}(5-4 \ln t)^{13} d t
$$

5. Using the FTC compute:

$$
\frac{d}{d x} \int_{0}^{x} e^{-u^{2}} d u
$$

6. Let $0<\mathrm{k}<1$ and consider the Elliptic Integral:

$$
E(x)=\int_{0}^{x} \frac{1}{\sqrt{1-k^{2} \sin ^{2} t}} d t
$$

Find dE/dx.
7. Using the FTC and the Chain Rule, calculate $\mathrm{dF} / \mathrm{dx}$ given that:

$$
F(x)=\int_{0}^{\sin x} \frac{1}{1+v^{5}} d v
$$

8. Consider the function defined by:

$$
H(x)=\int_{\frac{\pi}{2}}^{x^{3}} \cos t d t
$$

Calculate $\mathrm{dH} / \mathrm{dt}$ by:
(a) Using the FTC and the Chain Rule.
(b) By first performing the integration.
(c) Compare the two answers that you have obtained.
9. A particle is moving along a line so that its velocity is given by: $v(t)=(t-1)(t-4)(t-5)=t^{3}-10 t^{2}+29 t-20 \mathrm{ft} / \mathrm{sec}$ at time t seconds.
(a) Find the displacement of the particle over the time interval $[1,5]$.
(b) Find the total distance traveled by the particle over the time interval $[1,5]$.
10. Find the area of the region bounded by the graphs of the given functions. Sketch!
(a) $\mathrm{y}=\mathrm{x}^{2}+2, \mathrm{y}=-\mathrm{x}, \mathrm{x}=0$, and $\mathrm{x}=1$.
(b) $y=2-x^{2}$ and $y=x$
(c) $\mathrm{y}=\sin \mathrm{x}$ and $\mathrm{y}=\cos \mathrm{x}$ over $[\pi / 4,5 \pi / 4]$
(d) $y=3 x^{3}-x^{2}-10 x$ and $y=2 x-x^{2}$
(e) $y=x^{3}$ and $y=x^{6}$
(f) $y=x^{3}-x$ and $y=0$
(g) $y=x^{2}-4 x+3$ and $y=3+2 x-x^{2}$

